Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Hydroxy Metabolites of the Alzheimer's Drug Candidate 3-[(2,4-Dimethoxy)Benzylidene]-Anabaseine Dihydrochloride (GTS-21): Their Molecular Properties, Interactions with Brain Nicotinic Receptors, and Brain Penetration

William R. Kem, Vladimir M. Mahnir, Laszlo Prokai, Roger L. Papke, Xuefang Cao, Susan LeFrancois, Kristin Wildeboer, Katalin Prokai-Tatrai, Julia Porter-Papke and Ferenc Soti
Molecular Pharmacology January 2004, 65 (1) 56-67; DOI: https://doi.org/10.1124/mol.65.1.56
William R. Kem
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Vladimir M. Mahnir
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Laszlo Prokai
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Roger L. Papke
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xuefang Cao
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Susan LeFrancois
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kristin Wildeboer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Katalin Prokai-Tatrai
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Julia Porter-Papke
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ferenc Soti
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

3-[(2,4-Dimethoxy)benzylidene]-anabaseine dihydrochloride (DMXBA; GTS-21), an Alzheimer's drug candidate, selectively stimulates α7 nicotinic acetylcholine receptors. It rapidly enters the brain after oral administration and enhances cognitive behavior. Less than 1% of orally administered DMXBA is recovered in the urine. We report the identification and characterization of the major phase I metabolites of this drug candidate. Three hydroxy metabolites were generated in vitro by hepatic microsomal O-dealkylation of the two methoxy substituents on the benzylidene ring. They were also found in plasma of rats after oral administration, but at significantly lower concentrations relative to the parent compound. The metabolites displayed similar binding affinities and partial agonist potencies at rat brain α7 receptors. However, each displayed a higher efficacy than DMXBA for stimulating rat and human α7 receptors. Like DMXBA, the metabolites were weak antagonists at α4β2 receptors. The predicted conformations of the metabolites were nearly identical with that of DMXBA. Ionization of the tetrahydropyridyl nitrogen was essential for high-affinity binding of DMXBA to the α7 receptor. The hydroxy metabolites were much more polar than DMXBA, derived from their experimentally estimated octanol/water partition coefficients, and they entered the brain much less readily than DMXBA. Their contributions to the behavioral effects of orally administered DMXBA, if any, would probably be very small during short-term administration. Benzylidene anabaseines pharmacologically similar to the hydroxy metabolites, but which enter the brain more readily, may provide greater stimulation of α7 receptors in the whole organism.

  • Received August 4, 2003.
  • Accepted September 26, 2003.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 65 (1)
Molecular Pharmacology
Vol. 65, Issue 1
1 Jan 2004
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Hydroxy Metabolites of the Alzheimer's Drug Candidate 3-[(2,4-Dimethoxy)Benzylidene]-Anabaseine Dihydrochloride (GTS-21): Their Molecular Properties, Interactions with Brain Nicotinic Receptors, and Brain Penetration
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Hydroxy Metabolites of the Alzheimer's Drug Candidate 3-[(2,4-Dimethoxy)Benzylidene]-Anabaseine Dihydrochloride (GTS-21): Their Molecular Properties, Interactions with Brain Nicotinic Receptors, and Brain Penetration

William R. Kem, Vladimir M. Mahnir, Laszlo Prokai, Roger L. Papke, Xuefang Cao, Susan LeFrancois, Kristin Wildeboer, Katalin Prokai-Tatrai, Julia Porter-Papke and Ferenc Soti
Molecular Pharmacology January 1, 2004, 65 (1) 56-67; DOI: https://doi.org/10.1124/mol.65.1.56

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Hydroxy Metabolites of the Alzheimer's Drug Candidate 3-[(2,4-Dimethoxy)Benzylidene]-Anabaseine Dihydrochloride (GTS-21): Their Molecular Properties, Interactions with Brain Nicotinic Receptors, and Brain Penetration

William R. Kem, Vladimir M. Mahnir, Laszlo Prokai, Roger L. Papke, Xuefang Cao, Susan LeFrancois, Kristin Wildeboer, Katalin Prokai-Tatrai, Julia Porter-Papke and Ferenc Soti
Molecular Pharmacology January 1, 2004, 65 (1) 56-67; DOI: https://doi.org/10.1124/mol.65.1.56
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Fatty acid amide hydrolase in cisplatin nephrotoxicity
  • eCB Signaling System in hiPSC-Derived Neuronal Cultures
  • Benzbromarone relaxes airway smooth muscle via BK activation
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics