Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Salvinal, a Novel Microtubule Inhibitor Isolated from Salvia miltiorrhizae Bunge (Danshen), with Antimitotic Activity in Multidrug-Sensitive and -Resistant Human Tumor Cells

Jang-Yang Chang, Chi-Yen Chang, Ching-Chuan Kuo, Li-Tzong Chen, Yung-Shung Wein and Yueh-Hsiung Kuo
Molecular Pharmacology January 2004, 65 (1) 77-84; DOI: https://doi.org/10.1124/mol.65.1.77
Jang-Yang Chang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chi-Yen Chang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ching-Chuan Kuo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Li-Tzong Chen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yung-Shung Wein
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yueh-Hsiung Kuo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Aqueous extracts ofSalvia miltiorrhizae Bunge have been extensively used in the treatment of cardiovascular disorders and cancer in Asia. Recently, a compound, 5-(3-hydroxypropyl)-7-methoxy-2-(3′-methoxy-4′-hydroxyphenyl)-3-benzo[b]furancarbaldehyde (salvinal), isolated from this plant showed inhibitory activity against tumor cell growth and induced apoptosis in human cancer cells. In the present study, we investigated the cytotoxic effect and mechanisms of action of salvinal in human cancer cell lines. Salvinal caused inhibition of cell growth (IC50 range, 4–17 μM) in a variety of human cancer cell lines. Flow cytometry analysis showed that salvinal treatment resulted in a concentration-dependent accumulation of cells in the G2/M phase. We observed, using Hoechst 33258 dye staining, that salvinal blocked the cell cycle in mitosis. In vitro and in vivo examinations showed that salvinal inhibited tubulin polymerization in a concentration-dependent manner. Immunocytochemical studies demonstrated that salvinal treatment caused the changes of cellular microtubule network, similar to the effect of colchicine. In addition, salvinal treatment resulted in upregulation of cyclin B1 levels, activation of Cdc2 kinase, and Cdc25c phosphorylation. Furthermore, elevation of levels of MPM-2 phosphoepitopes in salvinal-treated cells in a concentration-dependent manner was also observed. Similar to the effect of other antitubulin agent, hyperphosphorylation of Bcl-2, induction of DNA fragmentation and activation of caspase-3 activity occurred in salvinal-treated cells. In particular, salvinal exhibited similar inhibitory activity against parental KB, P-glycoprotein–overexpressing KB vin10 and KB taxol-50 cells, and multidrug resistance-associated protein (MRP)-expressing etoposide-resistant KB 7D cells. Taken together, our data demonstrate that salvinal inhibits tubulin polymerization, arrests cell cycle at mitosis, and induces apoptosis. Notably, Salvinal is a poor substrate for transport by P-glycoprotein and MRP. Salvinal may be useful in the treatment of human cancers, particularly in patients with drug resistance.

  • Received August 29, 2003.
  • Accepted October 10, 2003.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 65 (1)
Molecular Pharmacology
Vol. 65, Issue 1
1 Jan 2004
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Salvinal, a Novel Microtubule Inhibitor Isolated from Salvia miltiorrhizae Bunge (Danshen), with Antimitotic Activity in Multidrug-Sensitive and -Resistant Human Tumor Cells
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Salvinal, a Novel Microtubule Inhibitor Isolated from Salvia miltiorrhizae Bunge (Danshen), with Antimitotic Activity in Multidrug-Sensitive and -Resistant Human Tumor Cells

Jang-Yang Chang, Chi-Yen Chang, Ching-Chuan Kuo, Li-Tzong Chen, Yung-Shung Wein and Yueh-Hsiung Kuo
Molecular Pharmacology January 1, 2004, 65 (1) 77-84; DOI: https://doi.org/10.1124/mol.65.1.77

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Salvinal, a Novel Microtubule Inhibitor Isolated from Salvia miltiorrhizae Bunge (Danshen), with Antimitotic Activity in Multidrug-Sensitive and -Resistant Human Tumor Cells

Jang-Yang Chang, Chi-Yen Chang, Ching-Chuan Kuo, Li-Tzong Chen, Yung-Shung Wein and Yueh-Hsiung Kuo
Molecular Pharmacology January 1, 2004, 65 (1) 77-84; DOI: https://doi.org/10.1124/mol.65.1.77
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Cysteine151 in Keap1 Drives CDDO-Me Pharmacodynamic Action
  • Allosteric Modulation of Metabotropic Glutamate Receptor 1
  • Mechanism of Selective Action of Paraherquamide A
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics