Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

The Role of Glycine Residues in the Function of Human Organic Anion Transporter 4

Fanfan Zhou, Kunihiko Tanaka, Zui Pan, Jianjie Ma and Guofeng You
Molecular Pharmacology May 2004, 65 (5) 1141-1147; DOI: https://doi.org/10.1124/mol.65.5.1141
Fanfan Zhou
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kunihiko Tanaka
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Zui Pan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jianjie Ma
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Guofeng You
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Human organic anion transporter 4 (hOAT4) belongs to a superfamily of organic ion transporters that play critical roles in the body disposition of clinically important drugs, including anti-HIV therapeutics, antitumor drugs, antibiotics, antihypertensives, and anti-inflammatories. In this study, we investigated the role of conserved glycine residues in hOAT4 function. We mutagenized each of the six glycine residues (at positions 11, 241, 383, 388, 400, and 466) to serine, and their functional properties were analyzed in COS-7 cells by measuring the uptake of [3H]estrone sulfate. Our results showed that mutants G11S, G383S, G388S, and G466S exhibited transport activities comparable with those of wild-type hOAT4. In contrast, mutants G241S and G400S almost completely lost transport function. We then further characterized Gly-241 and Gly-400 by mutagenizing these residues to amino acids with varying sizes of side chains, including alanine, valine, and leucine. We demonstrated that increasingly larger side chains at positions 241 and 400 increasingly impaired hOAT4 function. Cell-surface biotinylation using an impermeant biotinylating reagent showed that mutations of Gly-241 and Gly-400 interfered with the trafficking of the transporter onto cell surface. Immunofluorescence analysis of mutant-transfected cells confirmed these results. Substitutions of amino acids with large side chains at positions 241 and 400 resulted in decreased Vmax and increased Km. These results suggest that Gly-241 and Gly-400 are important both in targeting the transporter to the plasma membrane and in substrate binding. This is the first identification and characterization of critical amino acid residues in hOAT4 and may provide important insights into the structure-function relationships of the organic ion transporter family.

  • Received October 8, 2003.
  • Accepted February 2, 2004.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 65 (5)
Molecular Pharmacology
Vol. 65, Issue 5
1 May 2004
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The Role of Glycine Residues in the Function of Human Organic Anion Transporter 4
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

The Role of Glycine Residues in the Function of Human Organic Anion Transporter 4

Fanfan Zhou, Kunihiko Tanaka, Zui Pan, Jianjie Ma and Guofeng You
Molecular Pharmacology May 1, 2004, 65 (5) 1141-1147; DOI: https://doi.org/10.1124/mol.65.5.1141

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

The Role of Glycine Residues in the Function of Human Organic Anion Transporter 4

Fanfan Zhou, Kunihiko Tanaka, Zui Pan, Jianjie Ma and Guofeng You
Molecular Pharmacology May 1, 2004, 65 (5) 1141-1147; DOI: https://doi.org/10.1124/mol.65.5.1141
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Mechanism of the selective action of paraherquamide A
  • Benzbromarone Relaxes Airway Smooth Muscle via BK Activation
  • Relapsed-Leukemia Model with NT5C2/PRPS1 Hotspot Mutations
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics