Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Intracellular Ca2+ Regulates Amphetamine-Induced Dopamine Efflux and Currents Mediated by the Human Dopamine Transporter

Margaret E. Gnegy, Habibeh Khoshbouei, Kelly A. Berg, Jonathan A. Javitch, William P. Clarke, Minjia Zhang and Aurelio Galli
Molecular Pharmacology July 2004, 66 (1) 137-143; DOI: https://doi.org/10.1124/mol.66.1.137
Margaret E. Gnegy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Habibeh Khoshbouei
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kelly A. Berg
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jonathan A. Javitch
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
William P. Clarke
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Minjia Zhang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Aurelio Galli
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Although it is clear that amphetamine-induced dopamine (DA) release mediated by the dopamine transporter (DAT) is integral to the behavioral actions of this psychostimulant, the mechanism of this release is not clear. In this study, we explored the requirement for intracellular Ca2+ in amphetamine-induced DA efflux and currents mediated by the human DAT. The patch-clamp technique in the whole-cell configuration was used on Na+ and DA-preloaded human embryonic kidney 293 cells stably transfected with the human DAT (hDAT cells). Chelation of intracellular Ca2+ by inclusion of 50 μM BAPTA in the whole-cell pipette reduced the voltage-dependent amphetamine-induced hDAT current, with the greatest effect seen at positive voltages. Likewise, 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA) reduced amphetamine-induced DA efflux as measured by amperometry. Furthermore, preincubation of the cells with 50 μM BAPTA acetoxy methyl ester (AM) or thapsigargin also blocked amphetamine-induced release of preloaded N-methyl-4-[3H]phenylpyridinium from superfused hDAT cells. BAPTA-AM also reduced DA release from striatal synaptosomes. Amphetamine also led to an increase in intracellular Ca2+ that was blocked by prior treatment with 5 μM thapsigargin or 10 μM cocaine. These studies demonstrate that amphetamine-induced DAT-mediated currents and substrate efflux require internal Ca2+ and that amphetamine can stimulate dopamine efflux by regulating cytoplasmic Ca2+ levels through its interaction with DAT.

  • Received November 7, 2003.
  • Accepted April 12, 2004.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 66 (1)
Molecular Pharmacology
Vol. 66, Issue 1
1 Jul 2004
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Intracellular Ca2+ Regulates Amphetamine-Induced Dopamine Efflux and Currents Mediated by the Human Dopamine Transporter
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Intracellular Ca2+ Regulates Amphetamine-Induced Dopamine Efflux and Currents Mediated by the Human Dopamine Transporter

Margaret E. Gnegy, Habibeh Khoshbouei, Kelly A. Berg, Jonathan A. Javitch, William P. Clarke, Minjia Zhang and Aurelio Galli
Molecular Pharmacology July 1, 2004, 66 (1) 137-143; DOI: https://doi.org/10.1124/mol.66.1.137

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Intracellular Ca2+ Regulates Amphetamine-Induced Dopamine Efflux and Currents Mediated by the Human Dopamine Transporter

Margaret E. Gnegy, Habibeh Khoshbouei, Kelly A. Berg, Jonathan A. Javitch, William P. Clarke, Minjia Zhang and Aurelio Galli
Molecular Pharmacology July 1, 2004, 66 (1) 137-143; DOI: https://doi.org/10.1124/mol.66.1.137
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Fatty Acid Amide Hydrolase in Cisplatin Nephrotoxicity
  • Use-Dependent Relief of A-887826 Inhibition
  • Benzbromarone Relaxes Airway Smooth Muscle via BK Activation
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics