Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Functional Selectivity of D2 Receptor Ligands in a Chinese Hamster Ovary hD2L Cell Line: Evidence for Induction of Ligand-Specific Receptor States

Elaine A. Gay, Jonathan D. Urban, David E. Nichols, Gerry S. Oxford and Richard B. Mailman
Molecular Pharmacology July 2004, 66 (1) 97-105; DOI: https://doi.org/10.1124/mol.66.1.97
Elaine A. Gay
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jonathan D. Urban
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David E. Nichols
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gerry S. Oxford
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Richard B. Mailman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

There are now several examples of single G protein-coupled receptors to which binding of specific agonists causes differential effects on the associated signaling pathways. The dopamine D2 receptor is of special importance because the selective activation of functional pathways has been shown both in vitro and in situ. For this reason, the present work characterized a series of rigid D2 agonists in Chinese hamster ovary cells transfected with the human D2L receptor using three distinct functional endpoints: inhibition of cAMP synthesis, stimulation of mitogen-activated protein (MAP) kinase phosphorylation, and activation of G protein-coupled inwardly rectifying potassium channels (GIRKs). In this system, S-propylnorapomorphine (SNPA), R-propylnorapomorphine (RNPA), dihydrexidine (DHX), dinapsoline (DNS), and dinoxyline (DNX) all inhibited forskolin-stimulated adenylate cyclase activity to the same extent as the prototypical D2 agonist quinpirole (QP). The rank order of potency was the following: RNPA ≫ QP = DNX > SNPA > DHX = DNS. For MAP kinase phosphorylation, DHX, DNS, DNX, and RNPA had efficacy similar to QP, whereas SNPA was a partial agonist. The rank order of potency for MAP kinase phosphorylation was RNPA ≫ QP = DNX > DHX > DNS = SNPA. DNX activated GIRK channels to the same extent as QP, whereas DHX and DNS were partial agonists, and RNPA and SNPA caused no appreciable activation. These findings indicate that DHX, DNS, RNPA, and SNPA have atypical functional properties at the hD2L receptor and display different patterns of functional selectivity. We hypothesize that this functional selectivity may be a result of ligand induction of specific conformations of the D2L receptor that activate only selected signaling pathways.

  • Received October 10, 2003.
  • Accepted March 24, 2004.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 66 (1)
Molecular Pharmacology
Vol. 66, Issue 1
1 Jul 2004
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Functional Selectivity of D2 Receptor Ligands in a Chinese Hamster Ovary hD2L Cell Line: Evidence for Induction of Ligand-Specific Receptor States
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Functional Selectivity of D2 Receptor Ligands in a Chinese Hamster Ovary hD2L Cell Line: Evidence for Induction of Ligand-Specific Receptor States

Elaine A. Gay, Jonathan D. Urban, David E. Nichols, Gerry S. Oxford and Richard B. Mailman
Molecular Pharmacology July 1, 2004, 66 (1) 97-105; DOI: https://doi.org/10.1124/mol.66.1.97

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Functional Selectivity of D2 Receptor Ligands in a Chinese Hamster Ovary hD2L Cell Line: Evidence for Induction of Ligand-Specific Receptor States

Elaine A. Gay, Jonathan D. Urban, David E. Nichols, Gerry S. Oxford and Richard B. Mailman
Molecular Pharmacology July 1, 2004, 66 (1) 97-105; DOI: https://doi.org/10.1124/mol.66.1.97
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • The binding site for KCI807 in the androgen receptor
  • Fatty acid amide hydrolase in cisplatin nephrotoxicity
  • eCB Signaling System in hiPSC-Derived Neuronal Cultures
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics