Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Reduction of Renal Ischemia-Reperfusion Injury in 5-Lipoxygenase Knockout Mice and by the 5-Lipoxygenase Inhibitor Zileuton

Nimesh S. A. Patel, Salvatore Cuzzocrea, Prabal K. Chatterjee, Rosanna Di Paola, Lidia Sautebin, Domenico Britti and Christoph Thiemermann
Molecular Pharmacology August 2004, 66 (2) 220-227; DOI: https://doi.org/10.1124/mol.66.2.220
Nimesh S. A. Patel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Salvatore Cuzzocrea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Prabal K. Chatterjee
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rosanna Di Paola
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lidia Sautebin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Domenico Britti
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christoph Thiemermann
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The role of 5-lipoxygenase (5-LOX) in the pathophysiology of renal ischemia/reperfusion (I/R) injury is not known. Here we investigate the effects of 1) the 5-LOX inhibitor zileuton and 2) 5-LOX gene knockout (5-LOX–/–) mice on renal dysfunction and injury caused by I/R of the kidney in mice. Wild-type mice treated with zileuton (3 mg/kg i.v.) or 5-LOX–/– mice were subjected to bilateral renal artery occlusion (30 min) followed by reperfusion (24 h). Plasma urea, creatinine, and aspartate aminotransferase (AST) were measured as markers of renal dysfunction and reperfusion injury. Kidneys were used for histological evaluation of renal injury. Renal myeloperoxidase activity was measured and used as an indicator of polymorphonuclear leukocyte (PMN) infiltration and renal expression of intercellular adhesion molecule-1 (ICAM-1) was determined using immunohistochemistry. Administration of zileuton before I/R significantly reduced the degree of renal dysfunction (urea, creatinine) and injury (AST, histology). In addition, zileuton reduced the expression of ICAM-1 and the associated PMN infiltration caused by I/R of the mouse kidney. Compared with wild-type mice, the degree of renal dysfunction, injury, and inflammation caused by I/R in 5-LOX–/– mice was also significantly reduced, confirming the pathophysiological role of 5-LOX in the development of renal I/R injury. We propose that 1) endogenous 5-LOX metabolites enhance the degree of renal injury, dysfunction, and inflammation caused by I/R of the kidney by promoting the expression of adhesion molecules, and 2) inhibitors of 5-LOX may be useful in the treatment of conditions associated with I/R of the kidney.

  • Received December 12, 2003.
  • Accepted April 23, 2004.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 66 (2)
Molecular Pharmacology
Vol. 66, Issue 2
1 Aug 2004
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Reduction of Renal Ischemia-Reperfusion Injury in 5-Lipoxygenase Knockout Mice and by the 5-Lipoxygenase Inhibitor Zileuton
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Reduction of Renal Ischemia-Reperfusion Injury in 5-Lipoxygenase Knockout Mice and by the 5-Lipoxygenase Inhibitor Zileuton

Nimesh S. A. Patel, Salvatore Cuzzocrea, Prabal K. Chatterjee, Rosanna Di Paola, Lidia Sautebin, Domenico Britti and Christoph Thiemermann
Molecular Pharmacology August 1, 2004, 66 (2) 220-227; DOI: https://doi.org/10.1124/mol.66.2.220

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Reduction of Renal Ischemia-Reperfusion Injury in 5-Lipoxygenase Knockout Mice and by the 5-Lipoxygenase Inhibitor Zileuton

Nimesh S. A. Patel, Salvatore Cuzzocrea, Prabal K. Chatterjee, Rosanna Di Paola, Lidia Sautebin, Domenico Britti and Christoph Thiemermann
Molecular Pharmacology August 1, 2004, 66 (2) 220-227; DOI: https://doi.org/10.1124/mol.66.2.220
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • eCB Signaling System in hiPSC-Derived Neuronal Cultures
  • Benzbromarone relaxes airway smooth muscle via BK activation
  • Relapsed-leukemia model with NT5C2/PRPS1 hotspot mutations
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics