Abstract
The pretreatment of cultured cortical neurons with neurotrophic factors markedly potentiates the cytotoxicity induced by low concentrations of Zn2+ or excitotoxins. In the current study, we investigated the mechanism underlying the insulin-like growth factor-I (IGF-I)-induced Zn2+ toxicity potentiation. The pretreatment of primary cortical cultures for more than 12 h with 100 ng/ml of IGF-I increased the cytotoxicity induced by 80 μM Zn2+ by more than 2-fold. The IGF-I–enhanced cell death was blocked by the COX-2–specific inhibitors N-[2-(cyclohexyloxyl)-4-nitrophenyl]-methane sulfonamide (NS-398; 10–100 μM) and 1-[(4-methylsulfonyl)phenyl]-3-trifluoro-methyl-5-[(4-fluoro)phenyl]pyrazole (SC58125; 10 μM) and by the antioxidant trolox (30 μM). In addition, it was observed that COX-2 expression was increased 12 to 24 h after IGF-I treatment. Preincubation of cortical cultures with IGF-I increased arachidonic acid (AA)-induced cytotoxicity, and AA increased Zn2+ toxicity, which suggested the involvement of COX activity in these cellular responses. Moreover, enhanced COX-2 activity led to a decrease in the cell's reducing power, as indicated by a gradual depletion of intracellular GSH. Cortical neurons pretreated with IGF-I and then Zn2+ showed consistently enhanced reactive oxygen species production, which was repressed by NS-398 and SC58125. Cortical neurons treated with Zn2+ and then AA displayed the increased ROS production, which was also suppressed by NS-398 and SC58125. These results suggest that COX-2 is an endogenous factor responsible for the IGF-I–induced potentiation of Zn2+ toxicity and that enhanced COX-2 activity leads to a decrease in the cell's reducing power and an increase in ROS accumulation in primary cortical cultures.
- Received December 15, 2003.
- Accepted May 13, 2004.
- The American Society for Pharmacology and Experimental Therapeutics
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|