Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Cellular Trafficking of Human α1a-Adrenergic Receptors Is Continuous and Primarily Agonist-Independent

Daniel P. Morris, R. Reyn Price, Michael P. Smith, Beilei Lei and Debra A. Schwinn
Molecular Pharmacology October 2004, 66 (4) 843-854; DOI: https://doi.org/10.1124/mol.104.000430
Daniel P. Morris
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Reyn Price
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael P. Smith
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Beilei Lei
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Debra A. Schwinn
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

α1a-Adrenergic receptors (α1aARs) are present intracellularly and at the cell surface in cultured and natural cell models, where they are subject to agonist-mediated desensitization and internalization. To explore α1aAR trafficking, a hemagglutinin (HA)-tagged α1aAR/enhanced green fluorescent protein (EGFP) fusion protein was expressed in rat-1 fibroblasts and tracked by EGFP fluorescence and antibody labeling of surface receptors. Confocal analysis of antibody-labeled surface receptors revealed unexpected constitutive internalization in the absence of agonist stimulation. In partial agreement, the inverse agonist prazosin also caused a modest 20 ± 2% increase in surface receptor levels, suggesting a partial block of constitutive internalization caused by decreased basal activation. However, prazosin was unable to prevent internalization of antibody-tagged surface receptors observed by confocal microscopy or cause obvious redistribution of intracellular receptor to the surface, suggesting that the α1aAR is internalizing even in a basal-inactive state. In contrast to the α1aAR, surface labeling of an HA-tagged α1b-EGFP fusion protein did not result in any apparent constitutive internalization. Constitutive internalization of the α1aAR seems to occur alongside reversible agonist-induced internalization, and both seem to involve clathrin-mediated endocytosis but not degradation in lysozymes. Surface receptor density must be maintained by recycling, because the protein synthesis inhibitor cycloheximide has no effect on total or surface receptor density in agonist-treated or untreated cells for 6 h. Constitutive agonist-independent trafficking of α1aARs may provide a novel mechanism by which an internal pool of α1aARs are maintained and recycled to allow continuous agonist-induced signaling.

  • Received March 16, 2004.
  • Accepted July 15, 2004.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 66 (4)
Molecular Pharmacology
Vol. 66, Issue 4
1 Oct 2004
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Cellular Trafficking of Human α1a-Adrenergic Receptors Is Continuous and Primarily Agonist-Independent
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Cellular Trafficking of Human α1a-Adrenergic Receptors Is Continuous and Primarily Agonist-Independent

Daniel P. Morris, R. Reyn Price, Michael P. Smith, Beilei Lei and Debra A. Schwinn
Molecular Pharmacology October 1, 2004, 66 (4) 843-854; DOI: https://doi.org/10.1124/mol.104.000430

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Cellular Trafficking of Human α1a-Adrenergic Receptors Is Continuous and Primarily Agonist-Independent

Daniel P. Morris, R. Reyn Price, Michael P. Smith, Beilei Lei and Debra A. Schwinn
Molecular Pharmacology October 1, 2004, 66 (4) 843-854; DOI: https://doi.org/10.1124/mol.104.000430
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • The binding site for KCI807 in the androgen receptor
  • Fatty acid amide hydrolase in cisplatin nephrotoxicity
  • eCB Signaling System in hiPSC-Derived Neuronal Cultures
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics