Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Inhibition of Estrogen Receptor α-Mediated Transcription by Antiestrogenic 1,1-Dichloro-2,2,3-triarylcyclopropanes

Peng Cheng, Beatriz Kanterewicz, Pamela A. Hershberger, Kenneth S. McCarty Jr., Billy W. Day and Mark Nichols
Molecular Pharmacology October 2004, 66 (4) 970-977; DOI: https://doi.org/10.1124/mol.104.000752
Peng Cheng
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Beatriz Kanterewicz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pamela A. Hershberger
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kenneth S. McCarty Jr.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Billy W. Day
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mark Nichols
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

A novel class of pure antiestrogens, 1,1-dichloro-2,2,3-triarylcyclopropanes (DTACs), lack estrogenic activity in a mouse uterotrophic assay and inhibit the growth of estrogen-sensitive MCF-7 breast cancer cells (Day et al., 1991). Here, reporter assays were used to evaluate the effects of the DTACs on estrogen receptor α (ERα)-mediated transcription from either classic estrogen-response elements (EREs) or nonclassic AP-1 elements. Among the DTACs tested, only the compounds with smaller aromatic substituents, BDRM72 and BDRM81, displayed weak agonist activity on EREs. Their activity was less than that observed for the ER partial agonist, 4-hydroxytamoxifen (ZOHT). In competition experiments, the DTACs blocked estradiol-stimulated transcription from an ERE in a dose-dependent manner and were more effective inhibitors than ZOHT. Each of the DTACs was significantly less active than ZOHT or the pure antiestrogen ICI 182,780 (faslodex) in stimulating transcription from nonclassic AP-1 elements in the presence of ERα. DTACs did not modulate either basal or TPA (12-O-tetradecanoylphorbol-13-acetate)-stimulated transcription from an AP-1 element in the absence of ERα, indicating that they are not nonspecific inhibitors of transcription and that ERα is the drug target. Glutathione S-transferase pull-down assays were used to examine whether DTACs alter the interaction between ERα and the p160 coactivator, GRIP1. BDRM35, which has the same dimethylaminomethoxy and phenolic moieties as ZOHT, reduced binding by more than 50%. Thus, disruption of p160 coactivator recruitment by ERα may represent one mechanism by which DTACs function as antiestrogens. BDRM35 also suppresses estradiol induction of endogenous target genes c-myc and cyclin D1 in MCF-7 breast cancer cells.

  • Received March 25, 2004.
  • Accepted July 2, 2004.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 66 (4)
Molecular Pharmacology
Vol. 66, Issue 4
1 Oct 2004
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Inhibition of Estrogen Receptor α-Mediated Transcription by Antiestrogenic 1,1-Dichloro-2,2,3-triarylcyclopropanes
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Inhibition of Estrogen Receptor α-Mediated Transcription by Antiestrogenic 1,1-Dichloro-2,2,3-triarylcyclopropanes

Peng Cheng, Beatriz Kanterewicz, Pamela A. Hershberger, Kenneth S. McCarty, Billy W. Day and Mark Nichols
Molecular Pharmacology October 1, 2004, 66 (4) 970-977; DOI: https://doi.org/10.1124/mol.104.000752

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Inhibition of Estrogen Receptor α-Mediated Transcription by Antiestrogenic 1,1-Dichloro-2,2,3-triarylcyclopropanes

Peng Cheng, Beatriz Kanterewicz, Pamela A. Hershberger, Kenneth S. McCarty, Billy W. Day and Mark Nichols
Molecular Pharmacology October 1, 2004, 66 (4) 970-977; DOI: https://doi.org/10.1124/mol.104.000752
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • The binding site for KCI807 in the androgen receptor
  • Fatty acid amide hydrolase in cisplatin nephrotoxicity
  • eCB Signaling System in hiPSC-Derived Neuronal Cultures
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics