Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Ligand Binding and Kinetics of Folate Receptor Recycling in Vivo: Impact on Receptor-Mediated Drug Delivery

Chrystal M. Paulos, Joseph A. Reddy, Christopher P. Leamon, Mary Jo Turk and Philip S. Low
Molecular Pharmacology December 2004, 66 (6) 1406-1414; DOI: https://doi.org/10.1124/mol.104.003723
Chrystal M. Paulos
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Joseph A. Reddy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christopher P. Leamon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mary Jo Turk
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Philip S. Low
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Folate receptor-targeted cancer therapies constitute a promising treatment for the approximately one third of human cancers that overexpress the folate receptor (FR). However, the potencies of all folate-receptor targeted therapies depend on 1) the rate of folate-linked drug conjugate binding to the cancer cell surface, 2) the dose of folate conjugate that will saturate tumor cell surface FR in vivo, 3) the rate of FR internalization, unloading, and recycling back to the tumor cell surface for another round of conjugate uptake, and 4) the residence time of the folate conjugate before its metabolism or release from the cell. Because little information exists on any of these processes, we have undertaken to characterize them on both cancer cells in culture and solid tumors in live mice. We quantitate here the properties of FR saturation, internalization, recycling, and unloading in several cultured cancer cell lines and murine tumor models, and we describe the conditions that should maximize both the potencies and specificities of folate receptor-targeted therapies in vivo.

  • Received June 14, 2004.
  • Accepted September 2, 2004.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 66 (6)
Molecular Pharmacology
Vol. 66, Issue 6
1 Dec 2004
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Ligand Binding and Kinetics of Folate Receptor Recycling in Vivo: Impact on Receptor-Mediated Drug Delivery
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Ligand Binding and Kinetics of Folate Receptor Recycling in Vivo: Impact on Receptor-Mediated Drug Delivery

Chrystal M. Paulos, Joseph A. Reddy, Christopher P. Leamon, Mary Jo Turk and Philip S. Low
Molecular Pharmacology December 1, 2004, 66 (6) 1406-1414; DOI: https://doi.org/10.1124/mol.104.003723

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

Ligand Binding and Kinetics of Folate Receptor Recycling in Vivo: Impact on Receptor-Mediated Drug Delivery

Chrystal M. Paulos, Joseph A. Reddy, Christopher P. Leamon, Mary Jo Turk and Philip S. Low
Molecular Pharmacology December 1, 2004, 66 (6) 1406-1414; DOI: https://doi.org/10.1124/mol.104.003723
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Nelfinavir and PXR
  • P2X7 Positive Modulator Structure-Activity Relationship
  • Predicting Drug Interactions with ENT1 and ENT2
Show more Article

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics