Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

A Retinoic Acid Receptor β/γ-Selective Prodrug (tazarotene) Plus a Retinoid X Receptor Ligand Induces Extracellular Signal-Regulated Kinase Activation, Retinoblastoma Hypophosphorylation, G0 Arrest, and Cell Differentiation

Andrew Yen, Robert Fenning, Roshantha Chandraratna, Patricia Walker and Susi Varvayanis
Molecular Pharmacology December 2004, 66 (6) 1727-1737; DOI: https://doi.org/10.1124/mol.104.003475
Andrew Yen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert Fenning
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Roshantha Chandraratna
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Patricia Walker
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Susi Varvayanis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Retinoic acid receptor (RAR)β is perceived to function as a tumor suppressor gene in various contexts where its absence is associated with tumorigenicity and its presence causes cell cycle arrest. Tazarotene is a prodrug selective for RARβ/γ, thereby motivating interest in determining whether tazarotene might activate putative tumor suppressor activity. Using HL-60 human myeloblastic leukemia cells, a cell line that undergoes G0 cell cycle arrest and myeloid differentiation in response to retinoic acid (RA), tazarotene failed to cause extracellular signal-regulated kinase (ERK) activation, a requirement for retinoic acid (RA)-induced G0 arrest and differentiation; retinoblastoma (RB) hypophosphorylation, another characteristic of RA-induced G0 arrest and cell differentiation; G0 arrest; or differentiation into mature myeloid cells. However, when used in combination with a retinoid X receptor (RXR)-selective ligand, tazarotene caused ERK activation, RB tumor suppressor protein hypophosphorylation, G0 arrest, and myeloid differentiation. The kinetics of G0 arrest and differentiation was similar to that of RA. Dose-response studies showed that diminishing tazarotene progressively diminished both induced cell differentiation and G0 arrest, where the doses for cellular effects were consistent with the transcriptional transactivation data. For either tazarotene or an RARα-selective ligand, diminishing the coadministered RXR-selective ligand diminished both induced differentiation and G0 arrest. Tazarotene could propel either early or late portions of the period leading to differentiation and G0 arrest and was interchangeable with an RARα-selective ligand. Tazarotene used with RXR-selective ligand may thus be a useful antineoplastic agent in differentiation induction therapy as exemplified by the prototypical RA treatment of acute promyelocytic leukemia.

  • Received June 14, 2004.
  • Accepted September 20, 2004.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 66 (6)
Molecular Pharmacology
Vol. 66, Issue 6
1 Dec 2004
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A Retinoic Acid Receptor β/γ-Selective Prodrug (tazarotene) Plus a Retinoid X Receptor Ligand Induces Extracellular Signal-Regulated Kinase Activation, Retinoblastoma Hypophosphorylation, G0 Arrest, and Cell Differentiation
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

A Retinoic Acid Receptor β/γ-Selective Prodrug (tazarotene) Plus a Retinoid X Receptor Ligand Induces Extracellular Signal-Regulated Kinase Activation, Retinoblastoma Hypophosphorylation, G0 Arrest, and Cell Differentiation

Andrew Yen, Robert Fenning, Roshantha Chandraratna, Patricia Walker and Susi Varvayanis
Molecular Pharmacology December 1, 2004, 66 (6) 1727-1737; DOI: https://doi.org/10.1124/mol.104.003475

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

A Retinoic Acid Receptor β/γ-Selective Prodrug (tazarotene) Plus a Retinoid X Receptor Ligand Induces Extracellular Signal-Regulated Kinase Activation, Retinoblastoma Hypophosphorylation, G0 Arrest, and Cell Differentiation

Andrew Yen, Robert Fenning, Roshantha Chandraratna, Patricia Walker and Susi Varvayanis
Molecular Pharmacology December 1, 2004, 66 (6) 1727-1737; DOI: https://doi.org/10.1124/mol.104.003475
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • CTS bias
  • Nelfinavir and PXR
  • P2X7 Positive Modulator Structure-Activity Relationship
Show more Article

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics