Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Gene Transfer of Cocaine Hydrolase Suppresses Cardiovascular Responses to Cocaine in Rats

Yang Gao, Elena Atanasova, Nan Sui, James D. Pancook, Jeffry D. Watkins and Stephen Brimijoin
Molecular Pharmacology January 2005, 67 (1) 204-211; DOI: https://doi.org/10.1124/mol.104.006924
Yang Gao
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Elena Atanasova
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nan Sui
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
James D. Pancook
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jeffry D. Watkins
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephen Brimijoin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We previously found that injection of a cocaine hydrolase (CocE) engineered from human butyrylcholinesterase will transiently accelerate cocaine metabolism in rats while reducing physiological and behavioral responses. To investigate more extended therapeutic effects, CocE cDNA was incorporated into a replication-incompetent type-5 adenoviral vector with a cytomegalovirus promoter. In rats dosed with this agent (2.2 × 109 plaque-forming units), the time course of expression was characterized by reverse transcription polymerase chain reaction for CocE mRNA and by radiometric assay for enzyme activity. Liver and plasma showed comparable expression, beginning 2 days after vector administration and peaking between 5 and 7 days. Plasma CocE content was up to 100 mU/ml, with total cocaine hydrolyzing activity 3000-fold greater than in “empty vector” or untreated controls. This level of expression approximated that found immediately after i.v. injection of purified hydrolase, 3 mg/kg, a dose that shortened cocaine halflife and blunted cardiovascular effects. Sucrose density gradient analysis showed that 96% of the circulating CocE activity was associated with tetrameric enzyme forms, expected to be stable in vivo. Consistent with this expectation, CocE from vector-treated rats showed a plasma t1/2 of 33 h when reinjected into naive rats. Transduction of another mutant butyrylcholinesterase, Applied Molecular Evolution mutant 359 (AME359), caused plasma cocaine hydrolase activity to rise 50,000-fold. At the point of peak AME359 expression, cocaine was cleared from the blood too rapidly for accurate measurement, and pressor responses to the injection of drug were greatly impaired.

  • Received September 2, 2004.
  • Accepted September 22, 2004.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 67 (1)
Molecular Pharmacology
Vol. 67, Issue 1
1 Jan 2005
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Gene Transfer of Cocaine Hydrolase Suppresses Cardiovascular Responses to Cocaine in Rats
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Gene Transfer of Cocaine Hydrolase Suppresses Cardiovascular Responses to Cocaine in Rats

Yang Gao, Elena Atanasova, Nan Sui, James D. Pancook, Jeffry D. Watkins and Stephen Brimijoin
Molecular Pharmacology January 1, 2005, 67 (1) 204-211; DOI: https://doi.org/10.1124/mol.104.006924

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Gene Transfer of Cocaine Hydrolase Suppresses Cardiovascular Responses to Cocaine in Rats

Yang Gao, Elena Atanasova, Nan Sui, James D. Pancook, Jeffry D. Watkins and Stephen Brimijoin
Molecular Pharmacology January 1, 2005, 67 (1) 204-211; DOI: https://doi.org/10.1124/mol.104.006924
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Cysteine151 in Keap1 Drives CDDO-Me Pharmacodynamic Action
  • Pharmacological Characterization of the Human α6β4 nAChR
  • Allosteric Modulation of Metabotropic Glutamate Receptor 1
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics