Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleORIGINAL ARTICLE

A Multifunctional Aromatic Residue in the External Pore Vestibule of Na+ Channels Contributes to the Local Anesthetic Receptor

Suk Ying Tsang, Robert G. Tsushima, Gordon F. Tomaselli, Ronald A. Li and Peter H. Backx
Molecular Pharmacology February 2005, 67 (2) 424-434; DOI: https://doi.org/10.1124/mol.67.2.424
Suk Ying Tsang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert G. Tsushima
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gordon F. Tomaselli
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ronald A. Li
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter H. Backx
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Voltage-gated Na+ (Nav) channels are responsible for initiating action potentials in excitable cells and are the targets of local anesthetics (LA). The LA receptor is localized to the cytoplasmic pore mouth formed by the S6 segments from all four domains (DI–DIV) but several outer pore-lining residues have also been shown to influence LA block (albeit somewhat modestly). Many of the reported amino acid substitutions, however, also disrupt the inactivated conformations that favor LA binding, complicating the interpretation of their specific effects on drug block. In this article, we report that an externally accessible aromatic residue in the Nav channel pore, DIV-Trp1531, when substituted with cysteine, completely abolished LA block (e.g., 300 μM mexiletine induced a use-dependent block with 65.0 ± 2.9% remaining current and –11.0 ± 0.6 mV of steady-state inactivation shift of wild-type (WT) channels versus 97.4 ± 0.7% and –2.4 ± 2.1 mV of W1531C, respectively; p < 0.05) without destabilizing fast inactivation (complete inactivation at 20 ms at –20 mV; V1/2 = –70.0 ± 1.6 mV versus –48.6 ± 0.5 mV of WT). W1531C also abolished internal QX-222 block (200 μM; 98.4 ± 3.4% versus 54.0 ± 3.2% of WT) without altering drug access. It is interesting that W1531Y restored WT blocking behavior, whereas W1531A channels exhibited an intermediate phenotype. Together, our results provide novel insights into the mechanism of drug action, and the structural relationship between the LA receptor and the outer pore vestibule.

  • Received January 16, 2004.
  • Accepted September 20, 2004.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 67 (2)
Molecular Pharmacology
Vol. 67, Issue 2
1 Feb 2005
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A Multifunctional Aromatic Residue in the External Pore Vestibule of Na+ Channels Contributes to the Local Anesthetic Receptor
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleORIGINAL ARTICLE

A Multifunctional Aromatic Residue in the External Pore Vestibule of Na+ Channels Contributes to the Local Anesthetic Receptor

Suk Ying Tsang, Robert G. Tsushima, Gordon F. Tomaselli, Ronald A. Li and Peter H. Backx
Molecular Pharmacology February 1, 2005, 67 (2) 424-434; DOI: https://doi.org/10.1124/mol.67.2.424

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleORIGINAL ARTICLE

A Multifunctional Aromatic Residue in the External Pore Vestibule of Na+ Channels Contributes to the Local Anesthetic Receptor

Suk Ying Tsang, Robert G. Tsushima, Gordon F. Tomaselli, Ronald A. Li and Peter H. Backx
Molecular Pharmacology February 1, 2005, 67 (2) 424-434; DOI: https://doi.org/10.1124/mol.67.2.424
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Conclusion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • The 73-kDa Heat Shock Cognate Protein Is a CXCR4 Binding Protein that Regulates the Receptor Endocytosis and the Receptor-Mediated Chemotaxis
  • Endogenous Regulator of G-Protein Signaling Proteins Regulate the Kinetics of Gαq/11-Mediated Modulation of Ion Channels in Central Nervous System Neurons
  • A Novel Cyclohexene Derivative, Ethyl (6R)-6-[N-(2-Chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), Selectively Inhibits Toll-Like Receptor 4-Mediated Cytokine Production through Suppression of Intracellular Signaling
Show more ORIGINAL ARTICLE

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics