Abstract
To overcome camptothecin's (CPT) lactone instability, reversibility of the drug-target interaction, and drug resistance, attempts to synthesize compounds that are CPT-like in their specificity and potency yet display a unique profile have been underway. In this pursuit, we have identified one of the idenoisoquinoline derivatives, MJ-III-65 (NSC 706744; 6-[3-(2-hydroxyethyl)amino-1-propyl]-5,6-dihydro-2,3-dimethoxy-8,9-methylenedioxy-5,11-dioxo-11H-indeno[1,2-c]isoquinoline) with both similarities and differences from CPT. MJ-III-65 traps topoisomerase I (Top1) reversibly like CPT but with different DNA sequence preferences. Consistent with Top1 poisoning, protein-linked DNA breaks were detected in cells treated with MJ-III-65 at nanomolar concentrations. These MJ-III-65-induced protein-linked DNA breaks were resistant to reversal after an hour of drug removal, compared with CPT, which completely reversed. Studies in human cells in culture found MJ-III-65 to be cytotoxic. Furthermore, limited cross-resistance was observed in camptothecin-resistant cell lines. MJ-III-65 also exhibits antitumor activity in mouse tumor xenografts.
- Received June 14, 2004.
- Accepted November 5, 2004.
- The American Society for Pharmacology and Experimental Therapeutics
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|