Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
OtherAccelerated Communication

Deorphanization of GPRC6A: A Promiscuous l-α-Amino Acid Receptor with Preference for Basic Amino Acids

Petrine Wellendorph, Kasper B. Hansen, Anders Balsgaard, Jeremy R. Greenwood, Jan Egebjerg and Hans Bräuner-Osborne
Molecular Pharmacology March 2005, 67 (3) 589-597; DOI: https://doi.org/10.1124/mol.104.007559
Petrine Wellendorph
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kasper B. Hansen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anders Balsgaard
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jeremy R. Greenwood
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jan Egebjerg
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hans Bräuner-Osborne
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

One of the most important tasks of molecular pharmacology is the deorphanization of the large number of G-protein-coupled receptors with unidentified endogenous agonists. We recently reported the cloning and analysis of expression of a novel human family C G-protein-coupled receptor, termed hGPRC6A. To identify agonists at this orphan receptor, we faced the challenges of achieving surface expression in mammalian cell lines and establishing an appropriate functional assay. Generating a chimeric receptor construct, h6A/5.24, containing the ligand binding amino-terminal domain (ATD) of hGPRC6A with the signal transducing transmembrane and C terminus of the homologous goldfish 5.24 receptor allowed us to overcome these obstacles. Homology modeling of the hGPRC6A ATD based on the crystal structure of the metabotropic glutamate receptor subtype 1 predicted interaction with α-amino acids and was employed to rationally select potential ligands. Measurement of Ca2+-dependent chloride currents in Xenopus laevis oocytes facilitated the deorphanization of h6A/5.24 and identification of l-α-amino acids as agonists. The most active agonists were basic l-α-amino acids, l-Arg, l-Lys, and l-ornithine, suggesting that these may function as endogenous signaling molecules. Measurement of intracellular calcium in tsA cells expressing h6A/5.24 allowed determination of EC50 values, which confirmed the agonist preferences observed in oocytes. Cloning, cell surface expression and deorphanization of the mouse ortholog further reinforces the assignment of the agonist preferences of hGPRC6A. This study demonstrates the utility of a chimeric receptor approach in combination with molecular modeling, for elucidating agonist interaction with GPRC6A, a novel family C G-protein-coupled receptor.

  • Received September 23, 2004.
  • Accepted December 2, 2004.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 67 (3)
Molecular Pharmacology
Vol. 67, Issue 3
1 Mar 2005
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Deorphanization of GPRC6A: A Promiscuous l-α-Amino Acid Receptor with Preference for Basic Amino Acids
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
OtherAccelerated Communication

Deorphanization of GPRC6A: A Promiscuous l-α-Amino Acid Receptor with Preference for Basic Amino Acids

Petrine Wellendorph, Kasper B. Hansen, Anders Balsgaard, Jeremy R. Greenwood, Jan Egebjerg and Hans Bräuner-Osborne
Molecular Pharmacology March 1, 2005, 67 (3) 589-597; DOI: https://doi.org/10.1124/mol.104.007559

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
OtherAccelerated Communication

Deorphanization of GPRC6A: A Promiscuous l-α-Amino Acid Receptor with Preference for Basic Amino Acids

Petrine Wellendorph, Kasper B. Hansen, Anders Balsgaard, Jeremy R. Greenwood, Jan Egebjerg and Hans Bräuner-Osborne
Molecular Pharmacology March 1, 2005, 67 (3) 589-597; DOI: https://doi.org/10.1124/mol.104.007559
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • GABAA Receptor Desensitization by Low GABA
  • Structure of the Diltiazem Receptor Site on Calcium Channels
  • 5-HT and Sleep
Show more Accelerated Communication

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics