Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleOriginal Article

Anuroctoxin, a New Scorpion Toxin of the α-KTx 6 Subfamily, Is Highly Selective for Kv1.3 over IKCa1 Ion Channels of Human T Lymphocytes

Miklós Bagdáany, Cesar V. F. Batista, Norma A. Valdez-Cruz, Sándor Somodi, Ricardo C. Rodriguez de la Vega, Alexei F. Licea, Zoltáan Varga, Rezső Gáspár, Lourival D. Possani and György Panyi
Molecular Pharmacology April 2005, 67 (4) 1034-1044; DOI: https://doi.org/10.1124/mol.104.007187
Miklós Bagdáany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Cesar V. F. Batista
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Norma A. Valdez-Cruz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sándor Somodi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ricardo C. Rodriguez de la Vega
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alexei F. Licea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Zoltáan Varga
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rezső Gáspár
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lourival D. Possani
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
György Panyi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The physiological function of T lymphocytes can be modulated selectively by peptide toxins acting on Kv1.3 K+ channels. Because Kv1.3-specific peptide toxins are considered to have a significant therapeutic potential in the treatment of autoimmune diseases, the discovery of new toxins is highly motivated. Through chromatographic procedures and electrophysiological assays, using patch-clamp methodology, the isolation of a novel peptide named anuroctoxin was accomplished using the venom of the Mexican scorpion Anuroctonus phaiodactylus. It has 35 amino acid residues with a molecular weight of 4082.8, tightly bound by four disulfide bridges whose complete covalent structure was determined. It has a pyroglutamic acid at the N-terminal region and an amidated C-terminal residue. Sequence comparison and phylogenetic clustering analysis classifies anuroctoxin into subfamily 6 of the α-KTx scorpion toxins (systematic name, α-KTx 6.12). Patch-clamp experiments show that anuroctoxin is a high-affinity blocker of Kv1.3 channels of human T lymphocytes with a Kd of 0.73 nM, and it does not block the Ca2+-activated IKCa1 K+ channels. These two channels play different but important roles in T-lymphocyte activation. Furthermore, the toxin practically does not inhibit Shaker IR, mKv1.1, and rKv2.1 channels, whereas the affinity of anuroctoxin for hKv1.2 is almost an order of magnitude smaller than for Kv1.3. The pharmacological profile and the selectivity of this new toxin for Kv1.3 over IKCa1 may provide an important tool for the modulation of the immune system, especially in cases in which selective inhibition of Kv1.3 is required.

  • Received September 15, 2004.
  • Accepted December 21, 2004.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 67 (4)
Molecular Pharmacology
Vol. 67, Issue 4
1 Apr 2005
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Anuroctoxin, a New Scorpion Toxin of the α-KTx 6 Subfamily, Is Highly Selective for Kv1.3 over IKCa1 Ion Channels of Human T Lymphocytes
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleOriginal Article

Anuroctoxin, a New Scorpion Toxin of the α-KTx 6 Subfamily, Is Highly Selective for Kv1.3 over IKCa1 Ion Channels of Human T Lymphocytes

Miklós Bagdáany, Cesar V. F. Batista, Norma A. Valdez-Cruz, Sándor Somodi, Ricardo C. Rodriguez de la Vega, Alexei F. Licea, Zoltáan Varga, Rezső Gáspár, Lourival D. Possani and György Panyi
Molecular Pharmacology April 1, 2005, 67 (4) 1034-1044; DOI: https://doi.org/10.1124/mol.104.007187

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleOriginal Article

Anuroctoxin, a New Scorpion Toxin of the α-KTx 6 Subfamily, Is Highly Selective for Kv1.3 over IKCa1 Ion Channels of Human T Lymphocytes

Miklós Bagdáany, Cesar V. F. Batista, Norma A. Valdez-Cruz, Sándor Somodi, Ricardo C. Rodriguez de la Vega, Alexei F. Licea, Zoltáan Varga, Rezső Gáspár, Lourival D. Possani and György Panyi
Molecular Pharmacology April 1, 2005, 67 (4) 1034-1044; DOI: https://doi.org/10.1124/mol.104.007187
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • The 73-kDa Heat Shock Cognate Protein Is a CXCR4 Binding Protein that Regulates the Receptor Endocytosis and the Receptor-Mediated Chemotaxis
  • Endogenous Regulator of G-Protein Signaling Proteins Regulate the Kinetics of Gαq/11-Mediated Modulation of Ion Channels in Central Nervous System Neurons
  • A Novel Cyclohexene Derivative, Ethyl (6R)-6-[N-(2-Chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), Selectively Inhibits Toll-Like Receptor 4-Mediated Cytokine Production through Suppression of Intracellular Signaling
Show more ORIGINAL ARTICLE

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics