Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleOriginal Article

Targeting Effector Memory T Cells with a Selective Peptide Inhibitor of Kv1.3 Channels for Therapy of Autoimmune Diseases

Christine Beeton, Michael W. Pennington, Heike Wulff, Satendra Singh, Daniel Nugent, George Crossley, Ilya Khaytin, Peter A. Calabresi, Chao-Yin Chen, George A. Gutman and K. George Chandy
Molecular Pharmacology April 2005, 67 (4) 1369-1381; DOI: https://doi.org/10.1124/mol.104.008193
Christine Beeton
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael W. Pennington
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Heike Wulff
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Satendra Singh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daniel Nugent
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
George Crossley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ilya Khaytin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter A. Calabresi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chao-Yin Chen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
George A. Gutman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K. George Chandy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The voltage-gated Kv1.3 K+ channel is a novel target for immunomodulation of autoreactive effector memory T (TEM) cells that play a major role in the pathogenesis of autoimmune diseases. We describe the characterization of the novel peptide ShK(L5) that contains l-phosphotyrosine linked via a nine-atom hydrophilic linker to the N terminus of the ShK peptide from the sea anemone Stichodactyla helianthus. ShK(L5) is a highly specific Kv1.3 blocker that exhibits 100-fold selectivity for Kv1.3 (Kd = 69 pM) over Kv1.1 and greater than 250-fold selectivity over all other channels tested. ShK(L5) suppresses the proliferation of human and rat TEM cells and inhibits interleukin-2 production at picomolar concentrations. Naive and central memory human T cells are initially 60-fold less sensitive than TEM cells to ShK(L5) and then become resistant to the peptide during activation by up-regulating the calcium-activated KCa3.1 channel. ShK(L5) does not exhibit in vitro cytotoxicity on mammalian cell lines and is negative in the Ames test. It is stable in plasma and when administered once daily by subcutaneous injection (10 μg/kg) attains “steady state” blood levels of ∼300 pM. This regimen does not cause cardiac toxicity assessed by continuous EKG monitoring and does not alter clinical chemistry and hematological parameters after 2-week therapy. ShK(L5) prevents and treats experimental autoimmune encephalomyelitis and suppresses delayed type hypersensitivity in rats. ShK(L5) might prove useful for therapy of autoimmune disorders.

  • Received October 13, 2004.
  • Accepted January 21, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 67 (4)
Molecular Pharmacology
Vol. 67, Issue 4
1 Apr 2005
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Targeting Effector Memory T Cells with a Selective Peptide Inhibitor of Kv1.3 Channels for Therapy of Autoimmune Diseases
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleOriginal Article

Targeting Effector Memory T Cells with a Selective Peptide Inhibitor of Kv1.3 Channels for Therapy of Autoimmune Diseases

Christine Beeton, Michael W. Pennington, Heike Wulff, Satendra Singh, Daniel Nugent, George Crossley, Ilya Khaytin, Peter A. Calabresi, Chao-Yin Chen, George A. Gutman and K. George Chandy
Molecular Pharmacology April 1, 2005, 67 (4) 1369-1381; DOI: https://doi.org/10.1124/mol.104.008193

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleOriginal Article

Targeting Effector Memory T Cells with a Selective Peptide Inhibitor of Kv1.3 Channels for Therapy of Autoimmune Diseases

Christine Beeton, Michael W. Pennington, Heike Wulff, Satendra Singh, Daniel Nugent, George Crossley, Ilya Khaytin, Peter A. Calabresi, Chao-Yin Chen, George A. Gutman and K. George Chandy
Molecular Pharmacology April 1, 2005, 67 (4) 1369-1381; DOI: https://doi.org/10.1124/mol.104.008193
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • The 73-kDa Heat Shock Cognate Protein Is a CXCR4 Binding Protein that Regulates the Receptor Endocytosis and the Receptor-Mediated Chemotaxis
  • Endogenous Regulator of G-Protein Signaling Proteins Regulate the Kinetics of Gαq/11-Mediated Modulation of Ion Channels in Central Nervous System Neurons
  • A Novel Cyclohexene Derivative, Ethyl (6R)-6-[N-(2-Chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), Selectively Inhibits Toll-Like Receptor 4-Mediated Cytokine Production through Suppression of Intracellular Signaling
Show more ORIGINAL ARTICLE

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics