Abstract
The mouse 5-hydroxytryptamine4a (5-HT4a) receptor is an unusual member of the G protein-coupled receptor superfamily because it possesses two separate carboxyl-terminal palmitoylation sites, which may allow the receptor to adopt different conformations in an agonist-dependent manner (J Biol Chem 277:2534–2546, 2002). By targeted mutation of the proximal (Cys-328/329) or distal (Cys-386) palmitoylation sites, or a combination of both, we generated 5-HT4a receptor variants with distinct functional characteristics. In this study, we showed that upon 5-HT stimulation, the 5-HT4a receptor undergoes rapid (t½ ∼ 2 min) and dose-dependent (EC50 ∼ 180 nM) phosphorylation on serine residues by a staurosporine-insensitive receptor kinase. Overexpression of GRK2 significantly reduced the receptor-promoted cAMP formation. The Cys328/329-Ser mutant, which is constitutively active in the absence of ligand, exhibited enhanced receptor phosphorylation under both basal and agonist-stimulated conditions and was more effectively desensitized and internalized via a β-arrestin-2 mediated pathway compared with the wild-type 5-HT4a. In contrast, G protein activation, phosphorylation, desensitization, and internalization of the other palmitoylation-deficient receptor mutants were affected differently. These findings suggest that palmitoylation plays an important role in modulating 5-HT4a receptor functions and that G protein activation, phosphorylation, desensitization, and internalization depend on the different receptor conformations.
- Received October 28, 2004.
- Accepted February 2, 2005.
- The American Society for Pharmacology and Experimental Therapeutics
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|