Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleORIGINAL ARTICLE

Long-Term Nicotine Treatment Decreases Striatal α6* Nicotinic Acetylcholine Receptor Sites and Function in Mice

Albert Lai, Neeraja Parameswaran, Mirium Khwaja, Paul Whiteaker, Jon M. Lindstrom, Hong Fan, J. Michael McIntosh, Sharon R. Grady and Maryka Quik
Molecular Pharmacology May 2005, 67 (5) 1639-1647; DOI: https://doi.org/10.1124/mol.104.006429
Albert Lai
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Neeraja Parameswaran
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mirium Khwaja
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paul Whiteaker
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jon M. Lindstrom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hong Fan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Michael McIntosh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sharon R. Grady
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Maryka Quik
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

α-Conotoxin MII-sensitive nicotinic acetylcholine receptors (nAChRs) are distinct from other subtypes in their relatively restricted localization to the striatum and some other brain regions. The effect of nicotine treatment on nAChR subtypes has been extensively investigated, with the exception of changes in α-conotoxin MII-sensitive receptor expression. We therefore determined the consequence of long-term nicotine administration on this subtype and its function. Nicotine was given in drinking water to provide a long-term yet intermittent treatment. Consistent with previous studies, nicotine exposure increased 125I-epibatidine and 125I-A85380 (3-[2-(S)-azetidinylmethoxy]pyridine), but not 125I-α-bungarotoxin, receptors in cortex and striatum. We observed an unexpected reduction (30%) in striatal 125I-α-conotoxin MII sites, which occurred because of a decrease in Bmax. This decline was more robust in older (>8-month-old) compared with younger (2–4-month-old) mice, suggesting age is important for nicotine-induced disruption of nAChR phenotype. Immunoprecipitation experiments using nAChR subunit-directed antibodies indicate that alterations in subunit-immunoreactivity with nicotine treatment agree with those in the receptor binding studies. To determine the relationship between striatal nAChR sites and function, we measured nicotine-evoked [3H]dopamine release. A decline was obtained with nicotine treatment that was caused by a selective decrease in α-conotoxin MII-sensitive but not α-conotoxin MII-resistant dopamine release. These results may explain previous findings that nicotine treatment decreased striatal nAChR-mediated dopamine function, despite an increase in [3H]nicotine (α4*) sites. The present data suggest that the α6* nAChR subtype represents a key factor in the control of dopamine release from striatum, which adapts to long-term nicotine treatment by down-regulation of α6* receptor sites and function.

  • Received August 21, 2004.
  • Accepted January 28, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 67 (5)
Molecular Pharmacology
Vol. 67, Issue 5
1 May 2005
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Long-Term Nicotine Treatment Decreases Striatal α6* Nicotinic Acetylcholine Receptor Sites and Function in Mice
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleORIGINAL ARTICLE

Long-Term Nicotine Treatment Decreases Striatal α6* Nicotinic Acetylcholine Receptor Sites and Function in Mice

Albert Lai, Neeraja Parameswaran, Mirium Khwaja, Paul Whiteaker, Jon M. Lindstrom, Hong Fan, J. Michael McIntosh, Sharon R. Grady and Maryka Quik
Molecular Pharmacology May 1, 2005, 67 (5) 1639-1647; DOI: https://doi.org/10.1124/mol.104.006429

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleORIGINAL ARTICLE

Long-Term Nicotine Treatment Decreases Striatal α6* Nicotinic Acetylcholine Receptor Sites and Function in Mice

Albert Lai, Neeraja Parameswaran, Mirium Khwaja, Paul Whiteaker, Jon M. Lindstrom, Hong Fan, J. Michael McIntosh, Sharon R. Grady and Maryka Quik
Molecular Pharmacology May 1, 2005, 67 (5) 1639-1647; DOI: https://doi.org/10.1124/mol.104.006429
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • The 73-kDa Heat Shock Cognate Protein Is a CXCR4 Binding Protein that Regulates the Receptor Endocytosis and the Receptor-Mediated Chemotaxis
  • Endogenous Regulator of G-Protein Signaling Proteins Regulate the Kinetics of Gαq/11-Mediated Modulation of Ion Channels in Central Nervous System Neurons
  • A Novel Cyclohexene Derivative, Ethyl (6R)-6-[N-(2-Chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), Selectively Inhibits Toll-Like Receptor 4-Mediated Cytokine Production through Suppression of Intracellular Signaling
Show more ORIGINAL ARTICLE

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics