Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleORIGINAL ARTICLE

The Met852 Residue Is a Key Organizer of the Ligand-Binding Cavity of the Human Mineralocorticoid Receptor

Jérôme Fagart, Cendrine Seguin, Grégory Maurice Pinon and Marie-Edith Rafestin-Oblin
Molecular Pharmacology May 2005, 67 (5) 1714-1722; DOI: https://doi.org/10.1124/mol.104.010710
Jérôme Fagart
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Cendrine Seguin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Grégory Maurice Pinon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marie-Edith Rafestin-Oblin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Spirolactones harboring various C7 substituents are aldosterone antagonists, and some of them are used in the treatment of essential hypertension. They bind to the human mineralocorticoid receptor and render it transcriptionally inactive. Structural analysis using a three-dimensional homology model of the ligand-binding domain of the receptor has revealed that the Met852 residue of the ligand-binding cavity faces the C7 substituent of spirolactones. We therefore tested the binding capacities of C7-substituted spirolactones in an in vitro system expressing either the mutant receptor, in which Met852 was replaced by alanine, or the wild-type receptor. The M852A mutation had almost no effect on the binding of C7-substituted spirolactones to mineralocorticoid receptor but dramatically reduced the capacity of the receptor to bind steroids with no C7 substituent (aldosterone, cortisol, deoxycorticosterone, and canrenone). cis-trans Cotransfection assays revealed that two spirolactones characterized by having a propyl group [7α-propyl-17α-hydroxy-3-oxo-preg-4-ene-21-carboxylic acid γ-lactone (RU26752)] or a thioacetyl group (spironolactone) at the C7 position acquired agonist properties when bound to the mutant receptor. In contrast, mexrenone and eplerenone, both of which harbor an acetyl group at the C7 position, retained antagonist properties when bound to the mutant receptor. Overall, these findings indicate that Met852 acts as an organizer residue that plays two major roles: 1) it allows steroids with no substituent at the C7 position to be accommodated within the ligand-binding cavity; and 2) it is involved in the steric hindrance that prevents C7-substituted spirolactones from folding the receptor in its active state.

  • Received December 22, 2004.
  • Accepted February 16, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 67 (5)
Molecular Pharmacology
Vol. 67, Issue 5
1 May 2005
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The Met852 Residue Is a Key Organizer of the Ligand-Binding Cavity of the Human Mineralocorticoid Receptor
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleORIGINAL ARTICLE

The Met852 Residue Is a Key Organizer of the Ligand-Binding Cavity of the Human Mineralocorticoid Receptor

Jérôme Fagart, Cendrine Seguin, Grégory Maurice Pinon and Marie-Edith Rafestin-Oblin
Molecular Pharmacology May 1, 2005, 67 (5) 1714-1722; DOI: https://doi.org/10.1124/mol.104.010710

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleORIGINAL ARTICLE

The Met852 Residue Is a Key Organizer of the Ligand-Binding Cavity of the Human Mineralocorticoid Receptor

Jérôme Fagart, Cendrine Seguin, Grégory Maurice Pinon and Marie-Edith Rafestin-Oblin
Molecular Pharmacology May 1, 2005, 67 (5) 1714-1722; DOI: https://doi.org/10.1124/mol.104.010710
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • The 73-kDa Heat Shock Cognate Protein Is a CXCR4 Binding Protein that Regulates the Receptor Endocytosis and the Receptor-Mediated Chemotaxis
  • Endogenous Regulator of G-Protein Signaling Proteins Regulate the Kinetics of Gαq/11-Mediated Modulation of Ion Channels in Central Nervous System Neurons
  • A Novel Cyclohexene Derivative, Ethyl (6R)-6-[N-(2-Chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), Selectively Inhibits Toll-Like Receptor 4-Mediated Cytokine Production through Suppression of Intracellular Signaling
Show more ORIGINAL ARTICLE

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics