Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleORIGINAL ARTICLE

Identification and Characterization of a Functional TATA Box Polymorphism of the UDP Glucuronosyltransferase 1A7 Gene

Tim O. Lankisch, Arndt Vogel, Stefan Eilermann, Anette Fiebeler, Britta Krone, Ayse Barut, Michael P. Manns and Christian P. Strassburg
Molecular Pharmacology May 2005, 67 (5) 1732-1739; DOI: https://doi.org/10.1124/mol.104.007146
Tim O. Lankisch
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Arndt Vogel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stefan Eilermann
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anette Fiebeler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Britta Krone
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ayse Barut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael P. Manns
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christian P. Strassburg
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

UDP glucuronosyltransferases (UGT) detoxify bilirubin and therapeutic drugs, a process influenced by single nucleotide polymorphisms (SNPs) in their structural genes and promoter elements. UGT1A1*28 is a functional UGT promoter polymorphism associated with Gilbert's disease and severe irinotecan toxicity, which also occurs in the absence of UGT1A1*28. The aim of this study was to identify and characterize UGT promoter variants relevant for irinotecan detoxification. Recombinant UGT1A proteins were analyzed for irinotecan metabolite glucuronidation by UGT activity assays. In 427 healthy blood donors and 71 homozygous UGT1A1*28 carriers, the 5′-untranslated region of the UGT1A7 gene locus was studied. An SNP was detected by allelic discrimination and characterized by reporter gene experiments. A novel –57 T→ G SNP with a gene frequency of 0.39 in healthy blood donors was identified in the putative TATA box of the UGT1A7 gene, reducing promoter activity to 30%. It is in linkage dysequilibrium with a variant of the UGT1A7 first exon that is present in the reduced-activity UGT1A7*3 and UGT1A7*4 alleles. Homozygous UGT1A1*28 carriers simultaneously carried this variant in 97%. We identified a novel reduced-function TATA box SNP of the UGT1A7 gene that catalyzes irinotecan metabolite detoxification. Its association with variants of the UGT1A1 promoter and UGT1A7 gene may influence irinotecan metabolism. Our finding emphasizes the importance of combinations of structural and regulatory gene polymorphisms that may be useful as markers of drug toxicity.

  • Received September 14, 2004.
  • Accepted February 16, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 67 (5)
Molecular Pharmacology
Vol. 67, Issue 5
1 May 2005
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Identification and Characterization of a Functional TATA Box Polymorphism of the UDP Glucuronosyltransferase 1A7 Gene
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleORIGINAL ARTICLE

Identification and Characterization of a Functional TATA Box Polymorphism of the UDP Glucuronosyltransferase 1A7 Gene

Tim O. Lankisch, Arndt Vogel, Stefan Eilermann, Anette Fiebeler, Britta Krone, Ayse Barut, Michael P. Manns and Christian P. Strassburg
Molecular Pharmacology May 1, 2005, 67 (5) 1732-1739; DOI: https://doi.org/10.1124/mol.104.007146

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleORIGINAL ARTICLE

Identification and Characterization of a Functional TATA Box Polymorphism of the UDP Glucuronosyltransferase 1A7 Gene

Tim O. Lankisch, Arndt Vogel, Stefan Eilermann, Anette Fiebeler, Britta Krone, Ayse Barut, Michael P. Manns and Christian P. Strassburg
Molecular Pharmacology May 1, 2005, 67 (5) 1732-1739; DOI: https://doi.org/10.1124/mol.104.007146
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • The 73-kDa Heat Shock Cognate Protein Is a CXCR4 Binding Protein that Regulates the Receptor Endocytosis and the Receptor-Mediated Chemotaxis
  • Endogenous Regulator of G-Protein Signaling Proteins Regulate the Kinetics of Gαq/11-Mediated Modulation of Ion Channels in Central Nervous System Neurons
  • A Novel Cyclohexene Derivative, Ethyl (6R)-6-[N-(2-Chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), Selectively Inhibits Toll-Like Receptor 4-Mediated Cytokine Production through Suppression of Intracellular Signaling
Show more ORIGINAL ARTICLE

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics