Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleORIGINAL ARTICLE

The Breast Cancer Resistance Protein (BCRP/ABCG2) Affects Pharmacokinetics, Hepatobiliary Excretion, and Milk Secretion of the Antibiotic Nitrofurantoin

Gracia Merino, Johan W. Jonker, Els Wagenaar, Antonius E. van Herwaarden and Alfred H. Schinkel
Molecular Pharmacology May 2005, 67 (5) 1758-1764; DOI: https://doi.org/10.1124/mol.104.010439
Gracia Merino
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Johan W. Jonker
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Els Wagenaar
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Antonius E. van Herwaarden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alfred H. Schinkel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Nitrofurantoin is a commonly used urinary tract antibiotic prescribed to lactating woman. It is actively transported into human and rat milk by an unknown mechanism. Our group has demonstrated an important role of the breast cancer resistance protein (BCRP/ABCG2) in the secretion of xenotoxins into the milk. This ATP-binding cassette drug efflux transporter extrudes xenotoxins from cells in intestine, liver, mammary gland, and other organs, affecting the pharmacological and toxicological behavior of many compounds. We investigated whether Bcrp1 is involved in the pharmacokinetic profile of nitrofurantoin and its active secretion into the milk. Using polarized cell lines, we found that nitrofurantoin is efficiently transported by murine Bcrp1 and human BCRP. After oral administration of 10 mg/kg nitrofurantoin, the area under the plasma concentrationtime curve in Bcrp1 knockout mice was almost 4-fold higher than in wild-type mice (148.8 ± 30.4 versus 37.5 ± 6.8 min · μg/ml); and after i.v. administration (5 mg/kg), 2-fold higher (139.2 ± 22.0 versus 73.9 ± 9.0 min · μg/ml). Hepatobiliary excretion of nitrofurantoin was almost abolished in Bcrp1 knockout mice (9.6 ± 3.2 versus 0.2 ± 0.1% in wild-type and Bcrp1 knockout mice, respectively). The milk-to-plasma ratio of nitrofurantoin was almost 80 times higher in wild-type compared with Bcrp1 knockout lactating female mice (45.7 ± 16.2 versus 0.6 ± 0.1). Nitrofurantoin elimination via milk was quantitatively even higher than hepatobiliary elimination. We conclude that Bcrp1 is an important determinant for the bioavailability of nitrofurantoin and the main mechanism involved in its hepatobiliary excretion and secretion into the milk.

  • Received December 17, 2004.
  • Accepted February 11, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 67 (5)
Molecular Pharmacology
Vol. 67, Issue 5
1 May 2005
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The Breast Cancer Resistance Protein (BCRP/ABCG2) Affects Pharmacokinetics, Hepatobiliary Excretion, and Milk Secretion of the Antibiotic Nitrofurantoin
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleORIGINAL ARTICLE

The Breast Cancer Resistance Protein (BCRP/ABCG2) Affects Pharmacokinetics, Hepatobiliary Excretion, and Milk Secretion of the Antibiotic Nitrofurantoin

Gracia Merino, Johan W. Jonker, Els Wagenaar, Antonius E. van Herwaarden and Alfred H. Schinkel
Molecular Pharmacology May 1, 2005, 67 (5) 1758-1764; DOI: https://doi.org/10.1124/mol.104.010439

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleORIGINAL ARTICLE

The Breast Cancer Resistance Protein (BCRP/ABCG2) Affects Pharmacokinetics, Hepatobiliary Excretion, and Milk Secretion of the Antibiotic Nitrofurantoin

Gracia Merino, Johan W. Jonker, Els Wagenaar, Antonius E. van Herwaarden and Alfred H. Schinkel
Molecular Pharmacology May 1, 2005, 67 (5) 1758-1764; DOI: https://doi.org/10.1124/mol.104.010439
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • The 73-kDa Heat Shock Cognate Protein Is a CXCR4 Binding Protein that Regulates the Receptor Endocytosis and the Receptor-Mediated Chemotaxis
  • Endogenous Regulator of G-Protein Signaling Proteins Regulate the Kinetics of Gαq/11-Mediated Modulation of Ion Channels in Central Nervous System Neurons
  • A Novel Cyclohexene Derivative, Ethyl (6R)-6-[N-(2-Chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), Selectively Inhibits Toll-Like Receptor 4-Mediated Cytokine Production through Suppression of Intracellular Signaling
Show more ORIGINAL ARTICLE

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics