Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleORIGINAL ARTICLE

Sex-Dependent Expression and Activity of the ATP-Binding Cassette Transporter Breast Cancer Resistance Protein (BCRP/ABCG2) in Liver

Gracia Merino, Antonius E. van Herwaarden, Els Wagenaar, Johan W. Jonker and Alfred H. Schinkel
Molecular Pharmacology May 2005, 67 (5) 1765-1771; DOI: https://doi.org/10.1124/mol.105.011080
Gracia Merino
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Antonius E. van Herwaarden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Els Wagenaar
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Johan W. Jonker
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alfred H. Schinkel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The breast cancer resistance protein (BCRP/ABCG2) is an ATP-binding cassette drug efflux transporter present in the liver and other tissues that affects the pharmacological behavior of many compounds. To assess the possible role of BCRP in sex-dependent pharmacokinetics, we studied the in vivo disposition of several murine Bcrp1 substrates in male and female wild-type and Bcrp1 knockout mice. After oral administration of the antibiotic nitrofurantoin, the area under the plasma concentration-time curve in wild-type female mice was approximately 2-fold higher than in wild-type male mice. Moreover, after i.v. administration of nitrofurantoin, the antiulcerative cimetidine, the anticancer drug topotecan, and the carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), the plasma levels in wild-type female mice were all significantly higher than those in wild-type male mice. Analysis of the expression of murine Bcrp1 in several pharmacokinetically important tissues showed that only the hepatic Bcrp1 expression was higher in male mice compared with female mice. In line with this difference, the hepatobiliary excretion for nitrofurantoin and PhIP was, respectively, 9-fold higher and approximately 2-fold higher in male compared with female wild-type mice. No significant sex differences were observed in plasma levels or hepatobiliary excretion for any of the tested compounds in Bcrp1–/– mice, indicating that Bcrp1 was the main cause of the sex difference in wild-type mice. Analysis of hepatic expression of human BCRP also indicated a higher expression in men compared with women. In conclusion, sex-dependent expression of BCRP/Bcrp1 in the liver may be a cause of sex-specific variability in the pharmacokinetics of BCRP substrates, with potential impact on the clinical-therapeutic applications and toxicity risks of drugs.

  • Received January 11, 2005.
  • Accepted February 18, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 67 (5)
Molecular Pharmacology
Vol. 67, Issue 5
1 May 2005
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Sex-Dependent Expression and Activity of the ATP-Binding Cassette Transporter Breast Cancer Resistance Protein (BCRP/ABCG2) in Liver
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleORIGINAL ARTICLE

Sex-Dependent Expression and Activity of the ATP-Binding Cassette Transporter Breast Cancer Resistance Protein (BCRP/ABCG2) in Liver

Gracia Merino, Antonius E. van Herwaarden, Els Wagenaar, Johan W. Jonker and Alfred H. Schinkel
Molecular Pharmacology May 1, 2005, 67 (5) 1765-1771; DOI: https://doi.org/10.1124/mol.105.011080

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleORIGINAL ARTICLE

Sex-Dependent Expression and Activity of the ATP-Binding Cassette Transporter Breast Cancer Resistance Protein (BCRP/ABCG2) in Liver

Gracia Merino, Antonius E. van Herwaarden, Els Wagenaar, Johan W. Jonker and Alfred H. Schinkel
Molecular Pharmacology May 1, 2005, 67 (5) 1765-1771; DOI: https://doi.org/10.1124/mol.105.011080
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • The 73-kDa Heat Shock Cognate Protein Is a CXCR4 Binding Protein that Regulates the Receptor Endocytosis and the Receptor-Mediated Chemotaxis
  • Endogenous Regulator of G-Protein Signaling Proteins Regulate the Kinetics of Gαq/11-Mediated Modulation of Ion Channels in Central Nervous System Neurons
  • A Novel Cyclohexene Derivative, Ethyl (6R)-6-[N-(2-Chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), Selectively Inhibits Toll-Like Receptor 4-Mediated Cytokine Production through Suppression of Intracellular Signaling
Show more ORIGINAL ARTICLE

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics