Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Coupling of Metabotropic Glutamate Receptor 8 to N-Type Ca2+ Channels in Rat Sympathetic Neurons

Juan Guo and Stephen R. Ikeda
Molecular Pharmacology June 2005, 67 (6) 1840-1851; DOI: https://doi.org/10.1124/mol.105.010975
Juan Guo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephen R. Ikeda
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Group III metabotropic glutamate receptors (mGluRs; mGluR4, 6, 7, and 8) couple to the Gαi/o-containing G protein heterotrimers and act as autoreceptors to regulate glutamate release, probably by inhibiting voltage-gated Ca2+ channels. Although most mGluRs have been functionally expressed in a variety of systems, few studies have demonstrated robust coupling of mGluR8 to downstream effectors. We therefore tested whether activation of mGluR8 inhibited Ca2+ channels. Both l-glutamate (l-Glu) and l-2-amino-4-phosphonobutyric acid (l-AP4), a selective agonist for group III mGluRs, inhibited N-type Ca2+ current in rat superior cervical ganglion neurons previously injected with a cDNA encoding mGluR8a/b. l-AP4 was ∼100-fold more potent (IC50 = 0.1 μM) than l-Glu (∼10 μM), but it had efficacy similar to that of l-Glu (∼50% maximal inhibition). The potency and efficacy of l-AP4 and l-Glu were similar for both splice variants. Agonist-induced inhibition was abolished by pretreatment with (R,S)-α-cyclopropyl-4-phosphonophenylglycine, a selective group III mGluR antagonist, and pertussis toxin. Deletion of either a calmodulin (CaM) binding motif in the C terminus or the entire C terminus of mGluR8 did not affect mGluR8-mediated response. Our studies indicate that both mGluR8a and 8b are capable of inhibiting N-type Ca2+ channel, suggesting a role as presynaptic autoreceptors to regulate neuronal excitability. The studies also imply that the potential CaM binding domain is not required for the mGluR8-mediated Ca2+ channel inhibition and the C terminus of mGluR8a is dispensable for receptor coupling to N-type Ca2+ channels.

  • Received January 6, 2005.
  • Accepted March 8, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 67 (6)
Molecular Pharmacology
Vol. 67, Issue 6
1 Jun 2005
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Coupling of Metabotropic Glutamate Receptor 8 to N-Type Ca2+ Channels in Rat Sympathetic Neurons
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Coupling of Metabotropic Glutamate Receptor 8 to N-Type Ca2+ Channels in Rat Sympathetic Neurons

Juan Guo and Stephen R. Ikeda
Molecular Pharmacology June 1, 2005, 67 (6) 1840-1851; DOI: https://doi.org/10.1124/mol.105.010975

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Coupling of Metabotropic Glutamate Receptor 8 to N-Type Ca2+ Channels in Rat Sympathetic Neurons

Juan Guo and Stephen R. Ikeda
Molecular Pharmacology June 1, 2005, 67 (6) 1840-1851; DOI: https://doi.org/10.1124/mol.105.010975
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Analgesic Effects and Mechanisms of Licochalcones
  • Induced Fit Ligand Binding to CYP3A4
  • Englerin A Inhibits T-Type Channels
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics