Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

The Crystal Structure of the Complex of the Anticancer Prodrug 7-Ethyl-10-[4-(1-piperidino)-1-piperidino]-carbonyloxycamptothecin (CPT-11) with Torpedo californica Acetylcholinesterase Provides a Molecular Explanation for Its Cholinergic Action

Michal Harel, Janice L. Hyatt, Boris Brumshtein, Christopher L. Morton, Kyoung Jin P. Yoon, Randy M. Wadkins, Israel Silman, Joel L. Sussman and Philip M. Potter
Molecular Pharmacology June 2005, 67 (6) 1874-1881; DOI: https://doi.org/10.1124/mol.104.009944
Michal Harel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Janice L. Hyatt
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Boris Brumshtein
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christopher L. Morton
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kyoung Jin P. Yoon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Randy M. Wadkins
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Israel Silman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Joel L. Sussman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Philip M. Potter
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The anticancer prodrug 7-ethyl-10-[4-(1-piperidino)-1-piperidino-]carbonyloxycamptothecin (CPT-11) is a highly effective camptothecin analog that has been approved for the treatment of colon cancer. It is hydrolyzed by carboxylesterases to yield 7-ethyl-10-hydroxycamptothecin (SN-38), a potent topoisomerase I poison. However, upon high-dose intravenous administration of CPT-11, a cholinergic syndrome is observed that can be ameliorated by atropine. Previous studies have indicated that CPT-11 can inhibit acetylcholinesterase (AChE), and here, we provide a detailed analysis of the inhibition of AChE by CPT-11 and by structural analogs. These studies demonstrate that the terminal dipiperidino moiety in CPT-11 plays a major role in enzyme inhibition, and this has been confirmed by X-ray crystallographic studies of a complex of the drug with Torpedo californica AChE. Our results indicate that CPT-11 binds within the active site gorge of the protein in a fashion similar to that observed with the Alzheimer drug donepezil. The 3D structure of the CPT-11/AChE complex also permits modeling of CPT-11 complexed with mammalian butyrylcholinesterase and carboxylesterase, both of which are known to hydrolyze the drug to the active metabolite. Overall, the results presented here clarify the mechanism of AChE inhibition by CPT-11 and detail the interaction of the drug with the protein. These studies may allow the design of both novel camptothecin analogs that would not inhibit AChE and new AChE inhibitors derived from the camptothecin scaffold.

  • Received December 2, 2004.
  • Accepted March 16, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 67 (6)
Molecular Pharmacology
Vol. 67, Issue 6
1 Jun 2005
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The Crystal Structure of the Complex of the Anticancer Prodrug 7-Ethyl-10-[4-(1-piperidino)-1-piperidino]-carbonyloxycamptothecin (CPT-11) with Torpedo californica Acetylcholinesterase Provides a Molecular Explanation for Its Cholinergic Action
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

The Crystal Structure of the Complex of the Anticancer Prodrug 7-Ethyl-10-[4-(1-piperidino)-1-piperidino]-carbonyloxycamptothecin (CPT-11) with Torpedo californica Acetylcholinesterase Provides a Molecular Explanation for Its Cholinergic Action

Michal Harel, Janice L. Hyatt, Boris Brumshtein, Christopher L. Morton, Kyoung Jin P. Yoon, Randy M. Wadkins, Israel Silman, Joel L. Sussman and Philip M. Potter
Molecular Pharmacology June 1, 2005, 67 (6) 1874-1881; DOI: https://doi.org/10.1124/mol.104.009944

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

The Crystal Structure of the Complex of the Anticancer Prodrug 7-Ethyl-10-[4-(1-piperidino)-1-piperidino]-carbonyloxycamptothecin (CPT-11) with Torpedo californica Acetylcholinesterase Provides a Molecular Explanation for Its Cholinergic Action

Michal Harel, Janice L. Hyatt, Boris Brumshtein, Christopher L. Morton, Kyoung Jin P. Yoon, Randy M. Wadkins, Israel Silman, Joel L. Sussman and Philip M. Potter
Molecular Pharmacology June 1, 2005, 67 (6) 1874-1881; DOI: https://doi.org/10.1124/mol.104.009944
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Mechanism of the selective action of paraherquamide A
  • Relapsed-Leukemia Model with NT5C2/PRPS1 Hotspot Mutations
  • The Binding Site for KCI807 in the Androgen Receptor
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics