Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Evidence for Biphasic Effects of Protein Kinase C on Serotonin Transporter Function, Endocytosis, and Phosphorylation

Lankupalle D. Jayanthi, Devadoss J. Samuvel, Randy D. Blakely and Sammanda Ramamoorthy
Molecular Pharmacology June 2005, 67 (6) 2077-2087; DOI: https://doi.org/10.1124/mol.104.009555
Lankupalle D. Jayanthi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Devadoss J. Samuvel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Randy D. Blakely
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sammanda Ramamoorthy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The serotonin transporter (SERT) regulates 5-hydroxytryptamine (serotonin) (5-HT) neurotransmission and is a high-affinity target for antidepressants and psychostimulants. In the present study, we investigated the mechanisms that contribute to a previously unidentified biphasic regulation of endogenous SERTs expressed in the platelets. Treatment of rat platelets with β-phorbol 12-myristate 13-acetate (PMA) for 5 min or less resulted in a rapid inhibition of SERT involving changes in intrinsic activity of the transporter (increased Km and decreased Vmax). β-PMA treatment for 30 min or more produced a sustained inhibition of SERT with a decrease only in the Vmax. Whereas inhibition of SERT activity was detected from 1 to 45 min after phorbol ester addition, the decrease in surface SERT required at least 30 min of phorbol ester incubation. Increased endocytosis of SERT accounted for the decrease in surface SERT at the later point. Protein kinase C (PKC)-mediated phosphorylation of SERT occurs on the plasma membrane during the initial phase of rapid transporter inhibition, and later, the phosphorylated SERT enters the intracellular pool. β-PMA-induced phosphorylation of SERT occurs initially on serine residues(s) and then on threonine residue(s). The initial serine phosphorylation corresponded to the first phase of rapid inhibition mediated by changes in intrinsic activity and/or silencing of SERT. The later phosphorylation on threonine residue(s) corresponded to the later phase of sustained inhibition mediated by an enhanced endocytosis of SERT. Together, these data reveal that in platelets, SERT function is regulated by PKC in a biphasic manner involving both trafficking-dependent and independent mechanisms and that these two events occur at distinct phases of transporter phosphorylation.

  • Received November 20, 2004.
  • Accepted March 17, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 67 (6)
Molecular Pharmacology
Vol. 67, Issue 6
1 Jun 2005
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Evidence for Biphasic Effects of Protein Kinase C on Serotonin Transporter Function, Endocytosis, and Phosphorylation
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Evidence for Biphasic Effects of Protein Kinase C on Serotonin Transporter Function, Endocytosis, and Phosphorylation

Lankupalle D. Jayanthi, Devadoss J. Samuvel, Randy D. Blakely and Sammanda Ramamoorthy
Molecular Pharmacology June 1, 2005, 67 (6) 2077-2087; DOI: https://doi.org/10.1124/mol.104.009555

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Evidence for Biphasic Effects of Protein Kinase C on Serotonin Transporter Function, Endocytosis, and Phosphorylation

Lankupalle D. Jayanthi, Devadoss J. Samuvel, Randy D. Blakely and Sammanda Ramamoorthy
Molecular Pharmacology June 1, 2005, 67 (6) 2077-2087; DOI: https://doi.org/10.1124/mol.104.009555
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Analgesic Effects and Mechanisms of Licochalcones
  • Induced Fit Ligand Binding to CYP3A4
  • Englerin A Inhibits T-Type Channels
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics