Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Transcriptional Regulation of the Human Hepatic CYP3A4: Identification of a New Distal Enhancer Region Responsive to CCAAT/Enhancer-Binding Protein β Isoforms (Liver Activating Protein and Liver Inhibitory Protein)

Celia P. Martínez-Jiménez, M. José Gómez-Lechón, José V. Castell and Ramiro Jover
Molecular Pharmacology June 2005, 67 (6) 2088-2101; DOI: https://doi.org/10.1124/mol.104.008169
Celia P. Martínez-Jiménez
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. José Gómez-Lechón
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
José V. Castell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ramiro Jover
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

CCAAT/enhancer-binding proteins (C/EBPs) are key transcription factors involved in the constitutive expression of several cytochrome P450 genes in the liver. Their concentration and activity change in several pathophysiological conditions. For instance, during inflammation, released cytokines induce repressive C/EBPβ-liver inhibitory protein (LIP), which antagonizes constitutive C/EBP transactivators [C/EBPα and C/EBPβ-liver activating protein (LAP)], down-regulating genes such as CYP3A4. However, the mechanism by which hepatic C/EBP factors modulate transcription of the CYP3A4 gene is not known. To elucidate the mechanism of action, we cotransfected luciferase reporter vectors, containing 5′-flanking deletions of the CYP3A4 gene, along with expression vectors for C/EBPβ-LAP, C/EBPβ-LIP, and C/EBPα, in hepatic (HepG2) and nonhepatic (HeLa) cells. Analysis of the –3557 to –6954 base pair (bp) region demonstrated the existence of a 288-bp sequence at –5.95 kilobases (kb), which showed maximal response to C/EBPβ-LAP (∼30-fold increase in HepG2 cells). Coexpression of LAP with increasing amounts of LIP reduced the activating effect by ∼70%. Site-directed mutagenesis of predicted C/EBPβ binding sites demonstrated the presence of four functional C/EBPβ-responsive motifs within this distal flanking region. Further experiments using chromatin immunoprecipitation proved the binding of endogenous C/EBPβ to the –5.95-kilobase enhancer of the CYP3A4 gene in human hepatocytes. Expression of recombinant LAP and LIP by means of adenoviral vectors resulted in their binding to this region, which was followed by activation/repression of CYP3A4. Together, our results uncover a new distal enhancer site in the CYP3A4 gene where C/EBPβ-LAP binds and activates transcription, whereas the truncated form, C/EBPβ-LIP, antagonizes LAP activity and causes gene repression.

  • Received October 19, 2004.
  • Accepted March 18, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 67 (6)
Molecular Pharmacology
Vol. 67, Issue 6
1 Jun 2005
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Transcriptional Regulation of the Human Hepatic CYP3A4: Identification of a New Distal Enhancer Region Responsive to CCAAT/Enhancer-Binding Protein β Isoforms (Liver Activating Protein and Liver Inhibitory Protein)
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Transcriptional Regulation of the Human Hepatic CYP3A4: Identification of a New Distal Enhancer Region Responsive to CCAAT/Enhancer-Binding Protein β Isoforms (Liver Activating Protein and Liver Inhibitory Protein)

Celia P. Martínez-Jiménez, M. José Gómez-Lechón, José V. Castell and Ramiro Jover
Molecular Pharmacology June 1, 2005, 67 (6) 2088-2101; DOI: https://doi.org/10.1124/mol.104.008169

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Transcriptional Regulation of the Human Hepatic CYP3A4: Identification of a New Distal Enhancer Region Responsive to CCAAT/Enhancer-Binding Protein β Isoforms (Liver Activating Protein and Liver Inhibitory Protein)

Celia P. Martínez-Jiménez, M. José Gómez-Lechón, José V. Castell and Ramiro Jover
Molecular Pharmacology June 1, 2005, 67 (6) 2088-2101; DOI: https://doi.org/10.1124/mol.104.008169
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Hexahydroquinoline derivatives activate ADGRG1/GPR56
  • Action of Org 34167 on HCN channels
  • The effects of echinocystic acid on Kv7 channels
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics