Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Influence of the Membrane Lipid Structure on Signal Processing via G Protein-Coupled Receptors

Qing Yang, Regina Alemany, Jesús Casas, Klára Kitajka, Stephen M. Lanier and Pablo V. Escribá
Molecular Pharmacology July 2005, 68 (1) 210-217; DOI: https://doi.org/10.1124/mol.105.011692
Qing Yang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Regina Alemany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jesús Casas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Klára Kitajka
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephen M. Lanier
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pablo V. Escribá
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We have recently reported that lipid structure regulates the interaction with membranes, recruitment to membranes, and distribution to membrane domains of heterotrimeric Gαβγ proteins, Gα subunits, and Gβγ dimers (J Biol Chem 279:36540–36545, 2004). Here, we demonstrate that modulation of the membrane structure not only determines G protein localization but also regulates the function of G proteins and related signaling proteins. In this context, the antitumor drug daunorubicin (daunomycin) and oleic acid changed the membrane structure and inhibited G protein activity in biological membranes. They also induced marked changes in the activity of the α2A/D-adrenergic receptor and adenylyl cyclase. In contrast, elaidic and stearic acid did not change the activity of the above-mentioned proteins. These fatty acids are chemical but not structural analogs of oleic acid, supporting the structural basis of the modulation of membrane lipid organization and subsequent regulation of G protein-coupled receptor signaling. In addition, oleic acid (and also daunorubicin) did not alter G protein activity in a membrane-free system, further demonstrating the involvement of membrane structure in this signal modulation. The present work also unravels in part the molecular bases involved in the antihypertensive (Hypertension 43:249–254, 2004) and anticancer (Mol Pharmacol 67:531–540, 2005) activities of synthetic oleic acid derivatives (e.g., 2-hydroxyoleic acid) as well as the molecular bases of the effects of diet fats on human health.

  • Received February 7, 2005.
  • Accepted April 15, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 68 (1)
Molecular Pharmacology
Vol. 68, Issue 1
1 Jul 2005
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Influence of the Membrane Lipid Structure on Signal Processing via G Protein-Coupled Receptors
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Influence of the Membrane Lipid Structure on Signal Processing via G Protein-Coupled Receptors

Qing Yang, Regina Alemany, Jesús Casas, Klára Kitajka, Stephen M. Lanier and Pablo V. Escribá
Molecular Pharmacology July 1, 2005, 68 (1) 210-217; DOI: https://doi.org/10.1124/mol.105.011692

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Influence of the Membrane Lipid Structure on Signal Processing via G Protein-Coupled Receptors

Qing Yang, Regina Alemany, Jesús Casas, Klára Kitajka, Stephen M. Lanier and Pablo V. Escribá
Molecular Pharmacology July 1, 2005, 68 (1) 210-217; DOI: https://doi.org/10.1124/mol.105.011692
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Fatty acid amide hydrolase in cisplatin nephrotoxicity
  • eCB Signaling System in hiPSC-Derived Neuronal Cultures
  • Benzbromarone relaxes airway smooth muscle via BK activation
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics