Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Single Mutations at Asn295 and Leu305 in the Cytoplasmic Half of Transmembrane α-Helix Domain 7 of the AT1 Receptor Induce Promiscuous Agonist Specificity for Angiotensin II Fragments: A Pseudo-Constitutive Activity

Ying-Hong Feng, Lingyin Zhou, Rongde Qiu and Robin Zeng
Molecular Pharmacology August 2005, 68 (2) 347-355; DOI: https://doi.org/10.1124/mol.105.011601
Ying-Hong Feng
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lingyin Zhou
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rongde Qiu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robin Zeng
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The most striking feature of a G protein-coupled receptor (GPCR) is its highly exclusive agonist specificity. This feature guarantees that a GPCR recognizes only its specific native agonist(s). In this study, we showed that two point mutations of N295S and L305Q enabled the AT1 receptors to recognize multiple Ang II fragments. Similar to the well established constitutively active AT1 mutant receptor N111G, the mutations of N295S and L305Q induced an increased production of basal inositol 1,4,5-phosphates in the absence of exogenous Ang II when expressed in HEK293 cells. Distinct from the N111G, however, is the fact that the increased basal activity disappeared in COS-7 cells because of the lack of endogenous Ang II fragments produced by the cells—a pseudo-constitutive activity. It is surprising that the Ang II analog [Sar1,Ile4,Ile8]Ang II and the native angiotensin II fragments Ang 1-7, Ang IV, and Ang 5-8, which are inactive in activating the wild-type receptor, activated N295S and L305Q. Results generated by lowering the Na+ concentration suggest that the mutant N295S and L305Q may be trapped in neutral conformational states (RN). These data allow us to identify for the first time a novel pattern of GPCR mutations with a broad spectrum of agonist specificity, suggesting possible existence of functional GPCRs in nature that are activated through conformational “selection” rather than “induction” mechanisms.

  • Received February 1, 2005.
  • Accepted May 17, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 68 (2)
Molecular Pharmacology
Vol. 68, Issue 2
1 Aug 2005
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Single Mutations at Asn295 and Leu305 in the Cytoplasmic Half of Transmembrane α-Helix Domain 7 of the AT1 Receptor Induce Promiscuous Agonist Specificity for Angiotensin II Fragments: A Pseudo-Constitutive Activity
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Single Mutations at Asn295 and Leu305 in the Cytoplasmic Half of Transmembrane α-Helix Domain 7 of the AT1 Receptor Induce Promiscuous Agonist Specificity for Angiotensin II Fragments: A Pseudo-Constitutive Activity

Ying-Hong Feng, Lingyin Zhou, Rongde Qiu and Robin Zeng
Molecular Pharmacology August 1, 2005, 68 (2) 347-355; DOI: https://doi.org/10.1124/mol.105.011601

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Single Mutations at Asn295 and Leu305 in the Cytoplasmic Half of Transmembrane α-Helix Domain 7 of the AT1 Receptor Induce Promiscuous Agonist Specificity for Angiotensin II Fragments: A Pseudo-Constitutive Activity

Ying-Hong Feng, Lingyin Zhou, Rongde Qiu and Robin Zeng
Molecular Pharmacology August 1, 2005, 68 (2) 347-355; DOI: https://doi.org/10.1124/mol.105.011601
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • The binding site for KCI807 in the androgen receptor
  • Fatty acid amide hydrolase in cisplatin nephrotoxicity
  • eCB Signaling System in hiPSC-Derived Neuronal Cultures
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics