Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

A Pregnane X Receptor Agonist with Unique Species-Dependent Stereoselectivity and Its Implications in Drug Development

Ying Mu, Corey R. J. Stephenson, Christopher Kendall, Simrat P. S. Saini, David Toma, Songrong Ren, Hongbo Cai, Stephen C. Strom, Billy W. Day, Peter Wipf and Wen Xie
Molecular Pharmacology August 2005, 68 (2) 403-413; DOI: https://doi.org/10.1124/mol.105.013292
Ying Mu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Corey R. J. Stephenson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christopher Kendall
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Simrat P. S. Saini
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David Toma
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Songrong Ren
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hongbo Cai
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephen C. Strom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Billy W. Day
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter Wipf
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wen Xie
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Pregnane X receptor (PXR) is an orphan nuclear receptor that regulates the expression of genes encoding drug-metabolizing enzymes and transporters. In addition to affecting drug metabolism, potent and selective PXR agonists may also have therapeutic potential by removing endogenous and exogenous toxins. In this article, we report the synthesis and identification of novel PXR agonists from a library of peptide isosteres. Compound S20, a C-cyclopropylalkylamide, was found to be a PXR agonist with both enantiomer- and species-specific selectivity. S20 has three chiral carbons and was resolved into its two enantiomers. The individual S20 enantiomers exhibited striking mouse/human-specific PXR activation, whereby enantiomer (+)-S20 preferentially activated hPXR, and enantiomer (-)-S20 was a better activator for mPXR. As a human PXR (hPXR) agonist, (+)-S20 was more potent and efficacious than rifampicin. Mutagenesis studies revealed that the ligand binding domain residue Phe305 is critical for the preference for the (-)-S20 enantiomer by the rodent PXR. Treatment of S20 induced the expression of drug-metabolizing enzymes and transporters in reporter gene assays, in primary human hepatocytes, and in “humanized” hPXR transgenic mice. To our knowledge, S20 represents the first compound whose enantiomers have opposite species preference in activating a xenobiotic receptor. The stereoselectivity may be used to guide the development of safer drugs to avoid drug-drug interactions or to achieve human-specific therapeutic effects when a xenobiotic receptor is being used as a drug target.

  • Received March 28, 2005.
  • Accepted May 4, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 68 (2)
Molecular Pharmacology
Vol. 68, Issue 2
1 Aug 2005
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A Pregnane X Receptor Agonist with Unique Species-Dependent Stereoselectivity and Its Implications in Drug Development
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

A Pregnane X Receptor Agonist with Unique Species-Dependent Stereoselectivity and Its Implications in Drug Development

Ying Mu, Corey R. J. Stephenson, Christopher Kendall, Simrat P. S. Saini, David Toma, Songrong Ren, Hongbo Cai, Stephen C. Strom, Billy W. Day, Peter Wipf and Wen Xie
Molecular Pharmacology August 1, 2005, 68 (2) 403-413; DOI: https://doi.org/10.1124/mol.105.013292

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

A Pregnane X Receptor Agonist with Unique Species-Dependent Stereoselectivity and Its Implications in Drug Development

Ying Mu, Corey R. J. Stephenson, Christopher Kendall, Simrat P. S. Saini, David Toma, Songrong Ren, Hongbo Cai, Stephen C. Strom, Billy W. Day, Peter Wipf and Wen Xie
Molecular Pharmacology August 1, 2005, 68 (2) 403-413; DOI: https://doi.org/10.1124/mol.105.013292
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Therapeutic Effects of FGF23 Antagonists in Hyp Mice
  • TRPV3 and TRPV4 Channels Coassemble into Heterotetramers
  • Secretin Amino-Terminal Structure-Activity Relationships and Complementary Mutagenesis at the Site of Docking to the Secretin Receptor
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics