Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Enhanced CCAAT/Enhancer-Binding Protein β-Liver-Enriched Inhibitory Protein Production by Oltipraz, Which Accompanies CUG Repeat-Binding Protein-1 (CUGBP1) RNA-Binding Protein Activation, Leads to Inhibition of Preadipocyte Differentiation

Eun Ju Bae and Sang Geon Kim
Molecular Pharmacology September 2005, 68 (3) 660-669; DOI: https://doi.org/10.1124/mol.105.012997
Eun Ju Bae
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sang Geon Kim
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

The CCAAT/enhancer-binding protein (C/EBP) β-isoforms liver-enriched activator protein (LAP) and truncated dominant-negative liver-enriched inhibitory protein (LIP) differentially regulate adipogenesis. We previously demonstrated that oltipraz (5-[2-pyrazinyl]-4-methyl-1,2-dithiol-3-thione), a cancer-chemopreventive agent, promotes C/EBPβ-LAP activation in hepatocytes. This study investigated whether oltipraz affects adipocyte differentiation and, if so, the molecular basis for the alterations in adipogenesis. The expression of LIP notably increased 6 to 48 h after oltipraz treatment of 3T3-L1 preadipocytes, whereas that of LAP was minimally changed. Oltipraz treatment ∼3-fold elevated the ratio of LIP to LAP. Immunoblot, gel-shift, and Southwestern analyses revealed that oltipraz enhanced the levels of nuclear LIP and LAP and their binding to the C/EBP-binding site. Cotransfection of predipocytes with the plasmid encoding LIP interfered with LAP-mediated luciferase expression, confirming the inhibitory role of LIP in gene expression. Likewise, LAP-mediated luciferase gene transactivation was inhibited by oltipraz, as was observed by cotransfection of a dominant-negative mutant form of C/EBP. Oltipraz enhanced cytoplasmic translocation and RNA binding of CUG repeat-binding protein-1 (CUGBP1) but not calreticulin, another RNA-binding protein that interacts with C/EBPβ mRNA. When 3T3-L1 preadipocytes were induced to differentiate by exposure to 3-isobutyl-1-methylxanthine, dexamethasone, and insulin, oltipraz markedly inhibited hormone-induced adipocyte differentiation. In primary cultured rat preadipocytes, oltipraz enhanced LIP production and inhibited adipocyte differentiation. In conclusion, oltipraz inhibits adipogenesis by promoting LIP production and activation, and the enhanced LIP production accompanies cytoplasmic translocation of CUGBP1 and its binding to the GC-rich region of C/EBPβ mRNA. Our finding holds significance in that adipogenesis can be pharmacologically controlled by LIP production.

  • Received March 17, 2005.
  • Accepted June 16, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 68 (3)
Molecular Pharmacology
Vol. 68, Issue 3
1 Sep 2005
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Enhanced CCAAT/Enhancer-Binding Protein β-Liver-Enriched Inhibitory Protein Production by Oltipraz, Which Accompanies CUG Repeat-Binding Protein-1 (CUGBP1) RNA-Binding Protein Activation, Leads to Inhibition of Preadipocyte Differentiation
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Enhanced CCAAT/Enhancer-Binding Protein β-Liver-Enriched Inhibitory Protein Production by Oltipraz, Which Accompanies CUG Repeat-Binding Protein-1 (CUGBP1) RNA-Binding Protein Activation, Leads to Inhibition of Preadipocyte Differentiation

Eun Ju Bae and Sang Geon Kim
Molecular Pharmacology September 1, 2005, 68 (3) 660-669; DOI: https://doi.org/10.1124/mol.105.012997

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Enhanced CCAAT/Enhancer-Binding Protein β-Liver-Enriched Inhibitory Protein Production by Oltipraz, Which Accompanies CUG Repeat-Binding Protein-1 (CUGBP1) RNA-Binding Protein Activation, Leads to Inhibition of Preadipocyte Differentiation

Eun Ju Bae and Sang Geon Kim
Molecular Pharmacology September 1, 2005, 68 (3) 660-669; DOI: https://doi.org/10.1124/mol.105.012997
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • The binding site for KCI807 in the androgen receptor
  • Fatty acid amide hydrolase in cisplatin nephrotoxicity
  • eCB Signaling System in hiPSC-Derived Neuronal Cultures
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics