Abstract
1321N1 human astrocytoma cells express thromboxane A2 (TXA2) receptors (TP). However, physiological consequences of TXA2 signaling in glial cells remain unclear. Herein, we show that TXA2 promotes interleukin-6 (IL-6) biosynthesis in glial cells. A TP agonist, 9,11-dideoxy-9α,11α-methanoepoxy-prosta-5Z,13E-dien-1-oic acid (U46619), enhanced IL-6 production in both 1321N1 cells and cultured mouse astrocytes. It has been shown that IL-6 gene expression is regulated by various transcription factors. Among them, we found a significant increase in cyclic AMP-response element-binding protein (CREB) activity with its phosphorylation at Ser133 by U46619 in 1321N1 cells. Although U46619 increased IL-6 promoter activity, a mutation at cyclic AMP-response element (CRE) on the promoter clearly suppressed the effect, suggesting that CRE is involved in U46619-induced IL-6 expression. Furthermore, both CREB and IL-6 promoter activities were suppressed by SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole], a p38 mitogen-activated protein kinase (MAPK) inhibitor, and H89 [N-[2-(4-bromocinnamylamino)-ethyl]-5-isoquinoline], a protein kinase A (PKA) inhibitor, indicating involvements of p38 MAPK and PKA in CREB activation and IL-6 expression. To determine which G-proteins are implicated in the U46619-induced IL-6 synthesis, the interfering mutants of Gαq, Gα12, or Gα13 by were overexpressed in 1321N1 cells adenoviral approach. It is noteworthy that the Gαq or Gα13 mutant blocked the IL-6 production by U46619. The constitutively active mutant of Gαq, Gα12, or Gα13 enhanced IL-6 production, indicating that Gαq and Gα13 were involved in U46619-induced IL-6 production. In conclusion, TXA2 enhances the IL-6 biosynthesis via the PKA p38 MAPK/CREB pathway in 1321N1 cells. IL-6 induction depends on Gαq and Gα13 as well. This is the first report showing TP-mediated IL-6 production in glial cells.
- Received March 15, 2005.
- Accepted June 20, 2005.
- The American Society for Pharmacology and Experimental Therapeutics
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|