Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Critical Amino Acid Residues of the Common Allosteric Site on the M2 Muscarinic Acetylcholine Receptor: More Similarities than Differences between the Structurally Divergent Agents Gallamine and Bis(ammonio)alkane-Type Hexamethylene-bis-[dimethyl-(3-phthalimidopropyl)ammonium]dibromide

Xi-Ping Huang, Stefanie Prilla, Klaus Mohr and John Ellis
Molecular Pharmacology September 2005, 68 (3) 769-778; DOI: https://doi.org/10.1124/mol.105.014043
Xi-Ping Huang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stefanie Prilla
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Klaus Mohr
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John Ellis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The structurally divergent agents gallamine and hexamethylene-bis-[dimethyl-(3-phthalimidopropyl)ammonium]dibromide (W84) are known to interact competitively at a common allosteric site on muscarinic receptors. Previous studies reported that the M2 selectivity of gallamine depended largely on the EDGE (172-175) sequence in the second outer loop (o2) and on 419Asn near the junction of o3 and the seventh transmembrane domain (TM7), whereas the selectivity of W84 depended on nearby residues 177Tyr and 423Thr. However, it has so far proven difficult to confer the high sensitivity for allosteric modulation of the M2 subtype onto the weakly sensitive M5 subtype by substituting these key residues. We now have found that M2 423Thr, not 419Asn, is the dominant residue in the o3/TM7 region for gallamine's high potency, although 419Asn can substitute for 423Thr in some contexts; in contrast, the presence of 419Asn reduces the potency of W84 in every context we have studied. In addition, the orientation of 177Tyr is crucial to high sensitivity toward W84, and it seems that the proline residue at position 179 in M5 (corresponding to M2 172Glu) may interfere with that orientation. Consistent with these observations, a mutant M5 receptor with these three key mutations, M5P179E, Q184Y, and H478T, showed dramatically increased sensitivity for W84 (>100-fold), compared with the wild-type M5 receptor. This same mutant receptor approached M2 sensitivity toward gallamine. Thus, gallamine and W84 derive high potency from the same receptor domains (epitopes in o2 and near the junction between o3 and TM7), even though these allosteric agents have quite different structures.

  • Received April 24, 2005.
  • Accepted June 3, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 68 (3)
Molecular Pharmacology
Vol. 68, Issue 3
1 Sep 2005
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Critical Amino Acid Residues of the Common Allosteric Site on the M2 Muscarinic Acetylcholine Receptor: More Similarities than Differences between the Structurally Divergent Agents Gallamine and Bis(ammonio)alkane-Type Hexamethylene-bis-[dimethyl-(3-phth…
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Critical Amino Acid Residues of the Common Allosteric Site on the M2 Muscarinic Acetylcholine Receptor: More Similarities than Differences between the Structurally Divergent Agents Gallamine and Bis(ammonio)alkane-Type Hexamethylene-bis-[dimethyl-(3-phthalimidopropyl)ammonium]dibromide

Xi-Ping Huang, Stefanie Prilla, Klaus Mohr and John Ellis
Molecular Pharmacology September 1, 2005, 68 (3) 769-778; DOI: https://doi.org/10.1124/mol.105.014043

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Critical Amino Acid Residues of the Common Allosteric Site on the M2 Muscarinic Acetylcholine Receptor: More Similarities than Differences between the Structurally Divergent Agents Gallamine and Bis(ammonio)alkane-Type Hexamethylene-bis-[dimethyl-(3-phthalimidopropyl)ammonium]dibromide

Xi-Ping Huang, Stefanie Prilla, Klaus Mohr and John Ellis
Molecular Pharmacology September 1, 2005, 68 (3) 769-778; DOI: https://doi.org/10.1124/mol.105.014043
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Fatty acid amide hydrolase in cisplatin nephrotoxicity
  • eCB Signaling System in hiPSC-Derived Neuronal Cultures
  • Benzbromarone relaxes airway smooth muscle via BK activation
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics