Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Monitoring the Activation State of the Insulin-Like Growth Factor-1 Receptor and Its Interaction with Protein Tyrosine Phosphatase 1B Using Bioluminescence Resonance Energy Transfer

Christophe Blanquart, Nicolas Boute, Danièle Lacasa and Tarik Issad
Molecular Pharmacology September 2005, 68 (3) 885-894; DOI: https://doi.org/10.1124/mol.105.013151
Christophe Blanquart
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nicolas Boute
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Danièle Lacasa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tarik Issad
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We have developed two bioluminescence resonance energy transfer (BRET)-based approaches to monitor 1) ligand-induced conformational changes within partially purified insulin-like growth factor-1 (IGF-1) receptors (IGF1R) and 2) IGF1R interaction with a substrate-trapping mutant of protein tyrosine phosphatase 1B (PTP1B-D181A) in living cells. In the first assay, human IGF1R fused to Renilla reniformis luciferase (Rluc) or yellow fluorescent protein (YFP) were cotransfected in human embryonic kidney (HEK)-293 cells. The chimeric receptors were then partially purified by wheat germ lectin chromatography, and BRET measurements were performed in vitro. In the second assay, BRET measurements were performed on living HEK-293 cells cotransfected with IGF1R-Rluc and YFP-PTP1B-D181A. Ligand-induced conformational changes within the IGF1R and interaction of the IGF1R with PTP1B could be detected as an energy transfer between Rluc and YFP. Dose-response experiments with IGF-1, IGF-2, and insulin demonstrated that the effects of these ligands on BRET correlate well with their known pharmacological properties toward the IGF1R. Inhibition of IGF1R autophosphorylation by the tyrphostin AG1024 (3-bromo-5-t-butyl-4-hydroxy-benzylidenemalonitrile) resulted in the inhibition of IGF1-induced BRET signal between the IGF1R and PTP1B. In addition, an anti-IGF1R antibody known to inhibit the biological effects of IGF-1 inhibited ligand-induced BRET signal within the IGF1R, as well as between IGF1R and PTP1B. This inhibition of BRET signal paralleled the inhibition of the ligand-induced autophosphorylation of the IGF1R by this antibody. In conclusion, these BRET-based assays permit 1) the rapid evaluation of the effects of agonists or inhibitory molecules on IGF1R activation and 2) the analysis of the regulation of IGF1R-PTP1B interaction in living cells.

  • Received March 22, 2005.
  • Accepted June 23, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 68 (3)
Molecular Pharmacology
Vol. 68, Issue 3
1 Sep 2005
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Monitoring the Activation State of the Insulin-Like Growth Factor-1 Receptor and Its Interaction with Protein Tyrosine Phosphatase 1B Using Bioluminescence Resonance Energy Transfer
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Monitoring the Activation State of the Insulin-Like Growth Factor-1 Receptor and Its Interaction with Protein Tyrosine Phosphatase 1B Using Bioluminescence Resonance Energy Transfer

Christophe Blanquart, Nicolas Boute, Danièle Lacasa and Tarik Issad
Molecular Pharmacology September 1, 2005, 68 (3) 885-894; DOI: https://doi.org/10.1124/mol.105.013151

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Monitoring the Activation State of the Insulin-Like Growth Factor-1 Receptor and Its Interaction with Protein Tyrosine Phosphatase 1B Using Bioluminescence Resonance Energy Transfer

Christophe Blanquart, Nicolas Boute, Danièle Lacasa and Tarik Issad
Molecular Pharmacology September 1, 2005, 68 (3) 885-894; DOI: https://doi.org/10.1124/mol.105.013151
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • The binding site for KCI807 in the androgen receptor
  • Fatty acid amide hydrolase in cisplatin nephrotoxicity
  • eCB Signaling System in hiPSC-Derived Neuronal Cultures
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics