Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Functional Complementation and the Analysis of Opioid Receptor Homodimerization

Geraldine Pascal and Graeme Milligan
Molecular Pharmacology September 2005, 68 (3) 905-915; DOI: https://doi.org/10.1124/mol.105.013847
Geraldine Pascal
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Graeme Milligan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Complementation of function after coexpression of pairs of nonfunctional G protein-coupled receptors that contain distinct inactivating mutations supports the hypothesis that such receptors exist as dimers. Chimeras between members of the metabotropic glutamate receptor-like family have been particularly useful because the N-terminal ligand binding and heptahelical transmembrane elements can be considered distinct domains. To examine the utility of a related approach for opioid receptors, fusion proteins were generated in which a pertussis toxin-resistant (Cys351Ile) variant of the G protein Gi1α was linked to the C-terminal tails of the δ opioid peptide (DOP), κ opioid peptide, and μ opioid peptide receptors. Each was functional as measured by agonist stimulation of guanosine 5′-([γ-35S]thio)triphosphate ([35S]GTPγS) binding in Giα immunoprecipitates from membranes of pertussis toxin-treated HEK293 cells. Agonist function was eliminated either by fusion of the receptors to Gi1αGly202Ala,Cys351Ile or mutation of a pair of conserved Val residues in intracellular loop 2 of each receptor. Coexpression, but not simple mixing, of the two inactive fusion proteins reconstituted agonist-loading of [35S]GTPγS for each receptor. At equimolar amounts, reconstitution of DOP receptor function was more extensive than κ or μ opioid receptor. Reconstitution of DOP function required two intact receptors and was not achieved by provision of extra Gi1αCys351Ile membrane anchored by linkage to DOP transmembrane domain 1. Inactive forms of all G protein α subunits can be produced by mutations equivalent to Gi1αGly202Ala. Because the amino acids modified in the opioid receptors are highly conserved in most rhodopsin-like receptors, this approach should be widely applicable to study the existence and molecular basis of receptor dimerization.

  • Received April 16, 2005.
  • Accepted June 20, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 68 (3)
Molecular Pharmacology
Vol. 68, Issue 3
1 Sep 2005
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Functional Complementation and the Analysis of Opioid Receptor Homodimerization
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Functional Complementation and the Analysis of Opioid Receptor Homodimerization

Geraldine Pascal and Graeme Milligan
Molecular Pharmacology September 1, 2005, 68 (3) 905-915; DOI: https://doi.org/10.1124/mol.105.013847

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Functional Complementation and the Analysis of Opioid Receptor Homodimerization

Geraldine Pascal and Graeme Milligan
Molecular Pharmacology September 1, 2005, 68 (3) 905-915; DOI: https://doi.org/10.1124/mol.105.013847
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • The binding site for KCI807 in the androgen receptor
  • Fatty acid amide hydrolase in cisplatin nephrotoxicity
  • eCB Signaling System in hiPSC-Derived Neuronal Cultures
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics