Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Investigation of the Phenylalkylamine Binding Site in hKv1.3 (H399T), a Mutant with a Reduced C-Type Inactivated State

Tobias Dreker and Stephan Grissmer
Molecular Pharmacology October 2005, 68 (4) 966-973; DOI: https://doi.org/10.1124/mol.105.012401
Tobias Dreker
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephan Grissmer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

To screen for residues of hKv1.3 important for current block by the phenylalkylamine verapamil, the inactivated-state-reduced H399T mutant was used as a background for mutagenesis studies. This approach was applied mainly to abolish the accumulation in the inactivated blocked state, recovery from which in the wild type is normally slow. Substitution of amino acids in the S6 transmembrane helix indicated a heavy disruption of verapamil block by the A413C mutation, reducing the IC50 from 2.4 to 267 μM. Subsequent scanning for verapamil moieties essential for current block was performed by application of derivatives with altered side groups. Neither the removal of the nitrile or the methyl group nor the addition of a methoxy group resulted in major variations of IC50 values for hKv1.3 (H399T) current block. However, disruption of current block by A413C was 4- to 10-fold less pronounced for derivatives lacking the 4-methoxy group of the (3,4-dimethoxyphenyl)ethylmethyl-amino part (devapamil) or all four methoxy groups (emopamil), respectively. Emopamil displayed a Hill coefficient of 2 for hKv1.3 (H399T/A413C) instead of 1 for hKv1.3 (H399T) current block. These results might indicate that the alteration of Ala413 modulates the access of phenylalkylamines to their binding site depending on the occupancy of the phenyl rings with methoxy groups. A computer-based docking model shows a subset of docked PAA conformations, with a spatial proximity between the (4-methoxyphenyl)ethyl-methyl-amino group and Ala413. The PAA binding site might therefore include a binding pocket for the aromatic ring of the ethyl-methyl-amino part in an S6–S6 interface gap.

  • Received February 28, 2005.
  • Accepted July 6, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 68 (4)
Molecular Pharmacology
Vol. 68, Issue 4
1 Oct 2005
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Investigation of the Phenylalkylamine Binding Site in hKv1.3 (H399T), a Mutant with a Reduced C-Type Inactivated State
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Investigation of the Phenylalkylamine Binding Site in hKv1.3 (H399T), a Mutant with a Reduced C-Type Inactivated State

Tobias Dreker and Stephan Grissmer
Molecular Pharmacology October 1, 2005, 68 (4) 966-973; DOI: https://doi.org/10.1124/mol.105.012401

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

Investigation of the Phenylalkylamine Binding Site in hKv1.3 (H399T), a Mutant with a Reduced C-Type Inactivated State

Tobias Dreker and Stephan Grissmer
Molecular Pharmacology October 1, 2005, 68 (4) 966-973; DOI: https://doi.org/10.1124/mol.105.012401
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Identification of Celecoxib targets by label-free TPP
  • Editing TOP2α Intron 19 5′ SS Circumvents Drug Resistance
  • CTS Bias
Show more Article

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics