Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Reactive Oxygen Species Elicit Apoptosis by Concurrently Disrupting Topoisomerase II and DNA-Dependent Protein Kinase

Hua-Rui Lu, Hong Zhu, Min Huang, Yi Chen, Yu-Jun Cai, Ze-Hong Miao, Jin-Sheng Zhang and Jian Ding
Molecular Pharmacology October 2005, 68 (4) 983-994; DOI: https://doi.org/10.1124/mol.105.011544
Hua-Rui Lu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hong Zhu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Min Huang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yi Chen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yu-Jun Cai
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ze-Hong Miao
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jin-Sheng Zhang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jian Ding
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Reactive oxygen species (ROS) are produced by all aerobic cells and have been implicated in the regulation of diverse cellular functions, including intracellular signaling, transcription activation, proliferation, and apoptosis. Salvicine, a novel diterpenoid quinone compound, demonstrates a broad spectrum of antitumor activities. Although salvicine is known to trap the DNA-topoisomerase II (Topo II) complex and induce DNA double-strand breaks (DSBs), its precise antitumor mechanisms remain to be clarified. In this study, we investigated whether salvicine altered the levels of ROS in breast cancer MCF-7 cells and whether these ROS contributed to the observed antitumoral activity. Our data revealed that salvicine stimulated intracellular ROS production and subsequently elicited notable DSBs. The addition of N-acetyl cysteine (NAC), an antioxidant, effectively attenuated the salvicine-induced ROS enhancement and subsequent DNA DSBs. Heat treatment reversed the accumulation of DNA DSBs, and the addition of NAC attenuated the Topo II-DNA cleavable complexes formation and the growth inhibition of salvicine-treated JN394top2-4 yeast cells, collectively indicating that Topo II is a target of the salvicine-induced ROS. On the other hand, when examining the impact of salvicine on DNA repair pathways, we unexpectedly observed that salvicine selectively down-regulated the catalytic subunit of DNA-dependent protein kinase (DNA-PKCS) protein levels and repressed DNA-PK kinase activity; both of these effects were attenuated by NAC pretreatment of MCF-7 cells. Finally and most importantly, NAC attenuated salvicine-induced apoptosis and cytotoxicity in MCF-7 cells. These results indicate that apart from its direct actions, salvicine generates ROS that modulate DNA damage and repair, contributing to the comprehensive biological consequences of salvicine treatment, such as DNA DSBs, apoptosis, and cytotoxicity in tumor cells. The finding of salvicine-induced ROS provides new evidence for the molecular mechanisms of this compound. Moreover, the effects of salvicine-induced ROS on Topo II and DNA-PK give new insights into the diverse biological activities of ROS.

  • Received January 28, 2005.
  • Accepted July 15, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 68 (4)
Molecular Pharmacology
Vol. 68, Issue 4
1 Oct 2005
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Reactive Oxygen Species Elicit Apoptosis by Concurrently Disrupting Topoisomerase II and DNA-Dependent Protein Kinase
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Reactive Oxygen Species Elicit Apoptosis by Concurrently Disrupting Topoisomerase II and DNA-Dependent Protein Kinase

Hua-Rui Lu, Hong Zhu, Min Huang, Yi Chen, Yu-Jun Cai, Ze-Hong Miao, Jin-Sheng Zhang and Jian Ding
Molecular Pharmacology October 1, 2005, 68 (4) 983-994; DOI: https://doi.org/10.1124/mol.105.011544

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

Reactive Oxygen Species Elicit Apoptosis by Concurrently Disrupting Topoisomerase II and DNA-Dependent Protein Kinase

Hua-Rui Lu, Hong Zhu, Min Huang, Yi Chen, Yu-Jun Cai, Ze-Hong Miao, Jin-Sheng Zhang and Jian Ding
Molecular Pharmacology October 1, 2005, 68 (4) 983-994; DOI: https://doi.org/10.1124/mol.105.011544
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • 6-Methylflavone Blocks Bitterness of Tenofovir
  • Positive Allosteric Modulation of the mGlu5 Receptor
  • Correction of mutant CNGA3 channel trafficking defect
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics