Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Retinoid X Receptor α Regulates the Expression of Glutathione S-transferase Genes and Modulates Acetaminophen-Glutathione Conjugation in Mouse Liver

Guoli Dai, Nathan Chou, Lin He, Maxwell A. Gyamfi, Alphonse J. Mendy, Angela L. Slitt, Curtis D. Klaassen and Yu-Jui Y. Wan
Molecular Pharmacology December 2005, 68 (6) 1590-1596; DOI: https://doi.org/10.1124/mol.105.013680
Guoli Dai
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nathan Chou
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lin He
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Maxwell A. Gyamfi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alphonse J. Mendy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Angela L. Slitt
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Curtis D. Klaassen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yu-Jui Y. Wan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Nuclear receptors, including constitutive androstane receptor, pregnane X receptor, and retinoid X receptor (RXR), modulate acetaminophen (APAP)-induced hepatotoxicity by regulating the expression of phase I cytochrome P450 (P450) genes. It has not been fully resolved, however, whether they regulate APAP detoxification at the phase II level. The aim of the current study was to evaluate the role of RXRα in phase II enzyme-mediated detoxification of APAP. Wild-type and hepatocyte-specific RXRα knockout mice were treated with a toxic dose of APAP (500 mg/kg i.p.). Mutant mice were protected from APAP-induced hepatotoxicity, even though basal liver glutathione (GSH) levels were significantly lower in mutant mice compared with those of wild-type mice. High-performance liquid chromatography analysis of APAP metabolites revealed significantly greater levels of APAP-GSH conjugates in livers and bile of mutant mice compared with those of wild-type mice. Furthermore, hepatocyte RXRα deficiency altered the gene expression profile of the glutathione S-transferase (Gst) family. Basal expression of 13 of 15 Gst genes studied was altered in hepatocyte-specific RXRα-deficient mice. This probably led to enhanced APAP-GSH conjugation and reduced accumulation of N-acetyl-p-benzoquinone imine, a toxic electrophile that is produced by biotransformation of APAP by phase I P450 enzymes. In conclusion, the data presented in this study define an RXRα-Gst regulatory network that controls APAP-GSH conjugation. This report reveals a potential novel strategy to enhance the detoxification of APAP or other xenobiotics by manipulating Gst activity through RXRα-mediated pathways.

  • Received April 11, 2005.
  • Accepted September 12, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 68 (6)
Molecular Pharmacology
Vol. 68, Issue 6
1 Dec 2005
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Retinoid X Receptor α Regulates the Expression of Glutathione S-transferase Genes and Modulates Acetaminophen-Glutathione Conjugation in Mouse Liver
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Retinoid X Receptor α Regulates the Expression of Glutathione S-transferase Genes and Modulates Acetaminophen-Glutathione Conjugation in Mouse Liver

Guoli Dai, Nathan Chou, Lin He, Maxwell A. Gyamfi, Alphonse J. Mendy, Angela L. Slitt, Curtis D. Klaassen and Yu-Jui Y. Wan
Molecular Pharmacology December 1, 2005, 68 (6) 1590-1596; DOI: https://doi.org/10.1124/mol.105.013680

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Retinoid X Receptor α Regulates the Expression of Glutathione S-transferase Genes and Modulates Acetaminophen-Glutathione Conjugation in Mouse Liver

Guoli Dai, Nathan Chou, Lin He, Maxwell A. Gyamfi, Alphonse J. Mendy, Angela L. Slitt, Curtis D. Klaassen and Yu-Jui Y. Wan
Molecular Pharmacology December 1, 2005, 68 (6) 1590-1596; DOI: https://doi.org/10.1124/mol.105.013680
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Action of Org 34167 on HCN channels
  • The effects of echinocystic acid on Kv7 channels
  • Cysteine151 in Keap1 Drives CDDO-Me Pharmacodynamic Action
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics