Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

An α7 Nicotinic Acetylcholine Receptor Gain-of-Function Mutant That Retains Pharmacological Fidelity

Andon N. Placzek, Francesca Grassi, Edwin M Meyer and Roger L. Papke
Molecular Pharmacology December 2005, 68 (6) 1863-1876; DOI: https://doi.org/10.1124/mol.105.016402
Andon N. Placzek
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Francesca Grassi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Edwin M Meyer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Roger L. Papke
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The α7-type nicotinic acetylcholine receptor (nAChR) has been recognized as a potential therapeutic target for the treatment of a variety of pathologic conditions, including schizophrenia, Alzheimer's disease, and peripheral inflammation. A unique feature of α7 nAChRs that tends to complicate functional assays intended to identify selective drugs for these receptors is the strong concentration-dependent desensitization of their agonist-evoked responses. At low agonist concentrations, voltage-clamp responses are small but tend to closely follow the solution exchange profile, whereas higher agonist concentrations produce responses that peak and then decay very rapidly, usually before the full drug concentration has been achieved. In this article, we report that an α7 T245S mutant, which has a point mutation at the sixth position in the α7 second transmembrane domain (T6′S), demonstrates a significant gain of function, sustaining current when exposed to relatively high agonist concentrations when expressed in Xenopus laevis oocytes and larger peak currents when expressed in mammalian GH4C1 cells. At the single-channel level, the T6′S mutant has a unitary conductance of 61.7 ± 5.8 pS, similar to that reported for wild-type α7, but a vastly longer average open duration. In addition, channel burst activity indicates a greater than 40% probability of channel re-opening in the sustained presence of 30 μM acetylcholine, consistent with a greater overall open probability relative to wild-type α7. Unlike the α7 L248T gain-of-function mutant, the T6′S mutant exhibits a pharmacological profile that is remarkably similar to the wild-type α7 receptor, implicating it as a potentially useful tool for identifying therapeutic agents.

  • Received July 1, 2005.
  • Accepted September 23, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 68 (6)
Molecular Pharmacology
Vol. 68, Issue 6
1 Dec 2005
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
An α7 Nicotinic Acetylcholine Receptor Gain-of-Function Mutant That Retains Pharmacological Fidelity
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

An α7 Nicotinic Acetylcholine Receptor Gain-of-Function Mutant That Retains Pharmacological Fidelity

Andon N. Placzek, Francesca Grassi, Edwin M Meyer and Roger L. Papke
Molecular Pharmacology December 1, 2005, 68 (6) 1863-1876; DOI: https://doi.org/10.1124/mol.105.016402

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

An α7 Nicotinic Acetylcholine Receptor Gain-of-Function Mutant That Retains Pharmacological Fidelity

Andon N. Placzek, Francesca Grassi, Edwin M Meyer and Roger L. Papke
Molecular Pharmacology December 1, 2005, 68 (6) 1863-1876; DOI: https://doi.org/10.1124/mol.105.016402
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Action of Org 34167 on HCN channels
  • The effects of echinocystic acid on Kv7 channels
  • Cysteine151 in Keap1 Drives CDDO-Me Pharmacodynamic Action
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics