Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Signaling via the Angiotensin-Converting Enzyme Results in the Phosphorylation of the Nonmuscle Myosin Heavy Chain IIA

Karin Kohlstedt, Roland Kellner, Rudi Busse and Ingrid Fleming
Molecular Pharmacology January 2006, 69 (1) 19-26; DOI: https://doi.org/10.1124/mol.105.016733
Karin Kohlstedt
From the Vascular Signalling Group, Institut für Kardiovaskuläre Physiologie, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany (K.K., R.B., I.F.); and Merck KGaA, Darmstadt, Germany (R.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Roland Kellner
From the Vascular Signalling Group, Institut für Kardiovaskuläre Physiologie, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany (K.K., R.B., I.F.); and Merck KGaA, Darmstadt, Germany (R.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rudi Busse
From the Vascular Signalling Group, Institut für Kardiovaskuläre Physiologie, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany (K.K., R.B., I.F.); and Merck KGaA, Darmstadt, Germany (R.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ingrid Fleming
From the Vascular Signalling Group, Institut für Kardiovaskuläre Physiologie, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany (K.K., R.B., I.F.); and Merck KGaA, Darmstadt, Germany (R.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The phosphorylation of the short C-terminal cytoplasmic domain of the somatic angiotensin-converting enzyme (ACE) is involved in the regulation of enzyme shedding. We determined whether the phosphorylation of the cytoplasmic domain of ACE (ACEct) on Ser1270 regulates the cleavage/secretion of the enzyme by affecting its association with other proteins. ACE was associated with β-actin and the nonmuscle myosin heavy chain IIA (MYH9) in endothelial cells, as determined by coimmunoprecipitation experiments as well as an ACEct affinity column. The ACE-associated MYH9 immunoprecipitated from 32P-labeled endothelial cells was basally phosphorylated and cell stimulation with ACE inhibitors, or with bradykinin, increased the phosphorylation of MYH9. Casein kinase 2 (CK2) but not protein kinase C phosphorylated MYH9 in vitro, CK2 coprecipitated with MYH9 from endothelial cells and the phosphorylation of MYH9 in intact cells paralleled the phosphorylation of ACE on Ser1270 by CK2. The CK2 inhibitor 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole attenuated the phosphorylation of ACE and MYH9, disrupted their association, and enhanced the cleavage/secretion of ACE from the plasma membrane. Cytochalasin D decreased the interaction between ACE and MYH9 and stimulated ACE shedding. Although MYH9 was still able to associate with residual amounts of a nonphosphorylatable S1270A ACE mutant, no ACE inhibitor-induced increase in MYH9 phosphorylation could be detected in S1270A-expressing cells. These data indicate that the interaction of ACE with MYH9 determines ACE shedding and is modulated by phosphorylation processes. Furthermore, because ACE inhibitors affect the phosphorylation of MYH9, the phosphorylation of this class II myosin might contribute to the phenomenon of ACE signaling in endothelial cells.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 69 (1)
Molecular Pharmacology
Vol. 69, Issue 1
1 Jan 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Signaling via the Angiotensin-Converting Enzyme Results in the Phosphorylation of the Nonmuscle Myosin Heavy Chain IIA
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Signaling via the Angiotensin-Converting Enzyme Results in the Phosphorylation of the Nonmuscle Myosin Heavy Chain IIA

Karin Kohlstedt, Roland Kellner, Rudi Busse and Ingrid Fleming
Molecular Pharmacology January 1, 2006, 69 (1) 19-26; DOI: https://doi.org/10.1124/mol.105.016733

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Signaling via the Angiotensin-Converting Enzyme Results in the Phosphorylation of the Nonmuscle Myosin Heavy Chain IIA

Karin Kohlstedt, Roland Kellner, Rudi Busse and Ingrid Fleming
Molecular Pharmacology January 1, 2006, 69 (1) 19-26; DOI: https://doi.org/10.1124/mol.105.016733
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Fatty acid amide hydrolase in cisplatin nephrotoxicity
  • eCB Signaling System in hiPSC-Derived Neuronal Cultures
  • Benzbromarone relaxes airway smooth muscle via BK activation
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics