Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Pharmacological Properties of GABAA Receptors Containing γ1 Subunits

S. Khom, I. Baburin, E. N. Timin, A. Hohaus, W. Sieghart and S. Hering
Molecular Pharmacology February 2006, 69 (2) 640-649; DOI: https://doi.org/10.1124/mol.105.017236
S. Khom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
I. Baburin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E. N. Timin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Hohaus
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W. Sieghart
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Hering
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

GABAA receptors composed of α1, β2, γ1 subunits are expressed in only a few areas of the brain and thus represent interesting drug targets. The pharmacological properties of this receptor subtype, however, are largely unknown. In the present study, we expressed α1β2γ1-GABAA receptors in Xenopus laevis oocytes and analyzed their modulation by 21 ligands from 12 structural classes making use of the two-microelectrode voltage-clamp method and a fast perfusion system. Modulation of GABA-induced chloride currents (IGABA) was studied at GABA concentrations eliciting 5 to 10% of the maximal response. Triazolam, clotiazepam, midazolam, 2-(4-methoxyphenyl)-2,3,5,6,7,8,9,10-octahydro-cyclohepta-(b)pyrazolo[4,3-d]pyridin-3-one (CGS 20625), 2-(4-chlorophenyl)-pyrazolo[4,3-c]quinolin-3-one (CGS 9896), diazepam, zolpidem, and bretazenil at 1 μM concentrations were able to significantly (>20%) enhance IGABA in α1β2γ1 receptors. Methyl-6,7-dimethoxy-4-ethyl-β-carboline-3-carboxylate, 3-methyl-6-[3-trifluoromethyl-phenyl]-1,2,4-triazolo[4,3-b]pyridazine (Cl 218,872), clobazam, flumazenil, 5-(6-ethyl-7-methoxy-5-methylimidazo[1,2-a]pyrimidin-2-yl)-3-methyl-[1,2,4]-oxadiazole (Ru 33203), 2-phenyl-4-(3-ethyl-piperidinyl)-quinoline (PK 9084), flurazepam, ethyl-7-methoxy-11,12,13,13a-tetrahydro-9-oxo-9H-imidazo[1,5-a]pyrrolo[2,1-c] [1,4]benzodiazepine-1-carboxylate (l-655,708), 2-(6-ethyl-7-methoxy-5-methylimidazo[1,2-a]pyrimidin-2-yl)-4-methyl-thiazole (Ru 33356), and 6-ethyl-7-methoxy-5-methylimidazo[1,2-a]pyrimidin-2-yl)phenylmethanone (Ru 32698) (1 μM each) had no significant effect, and flunitrazepam and 2-phenyl-4-(4-ethyl-piperidinyl)-quinoline (PK 8165) inhibited IGABA. The most potent compounds triazolam, clotiazepam, midazolam, and CGS 20625 were investigated in more detail on α1β2γ1 and α1β2γ2S receptors. The potency and efficiency of these compounds for modulating IGABA was smaller for α1β2γ1 than for α1β2γ2S receptors, and their effects on α1β2γ1 could not be blocked by flumazenil. CGS 20625 displayed the highest efficiency by enhancing at 100 μM IGABA (α1β2γ2) by 775 ± 17% versus 526 ± 14% IGABA (α1β2γ1) and 157 ± 17% IGABA (α1β2) (p < 0.05). These data provide new insight into the pharmacological properties of GABAA receptors containing γ1 subunits and may aid in the design of specific ligands for this receptor subtype.

  • Received July 26, 2005.
  • Accepted November 4, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 69 (2)
Molecular Pharmacology
Vol. 69, Issue 2
1 Feb 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Pharmacological Properties of GABAA Receptors Containing γ1 Subunits
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Pharmacological Properties of GABAA Receptors Containing γ1 Subunits

S. Khom, I. Baburin, E. N. Timin, A. Hohaus, W. Sieghart and S. Hering
Molecular Pharmacology February 1, 2006, 69 (2) 640-649; DOI: https://doi.org/10.1124/mol.105.017236

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Pharmacological Properties of GABAA Receptors Containing γ1 Subunits

S. Khom, I. Baburin, E. N. Timin, A. Hohaus, W. Sieghart and S. Hering
Molecular Pharmacology February 1, 2006, 69 (2) 640-649; DOI: https://doi.org/10.1124/mol.105.017236
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Therapeutic Effects of FGF23 Antagonists in Hyp Mice
  • TRPV3 and TRPV4 Channels Coassemble into Heterotetramers
  • Secretin Amino-Terminal Structure-Activity Relationships and Complementary Mutagenesis at the Site of Docking to the Secretin Receptor
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics