Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Novel Mechanisms of G Protein-Dependent Regulation of Endothelial Nitric-Oxide Synthase

Alexandra V. Andreeva, Rita Vaiskunaite, Mikhail A. Kutuzov, Jasmina Profirovic, Randal A. Skidgel and Tatyana Voyno-Yasenetskaya
Molecular Pharmacology March 2006, 69 (3) 975-982; DOI: https://doi.org/10.1124/mol.105.018846
Alexandra V. Andreeva
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rita Vaiskunaite
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mikhail A. Kutuzov
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jasmina Profirovic
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Randal A. Skidgel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tatyana Voyno-Yasenetskaya
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Endothelial nitric-oxide synthase (eNOS) plays a crucial role in the regulation of a variety of cardiovascular and pulmonary functions in both normal and pathological conditions. Multiple signaling inputs, including calcium, caveolin-1, phosphorylation by several kinases, and binding to the 90-kDa heat shock protein (Hsp90), regulate eNOS activity. Here, we report a novel mechanism of G protein-dependent regulation of eNOS. We demonstrate that in mammalian cells, the α subunit of heterotrimeric G12 protein (Gα12) can form a complex with eNOS in an activation- and Hsp90-independent manner. Our data show that Gα12 does not affect eNOS-specific activity, but it strongly enhances total eNOS activity by increasing cellular levels of eNOS. Experiments using inhibition of protein or mRNA synthesis show that Gα12 increases the expression of eNOS by increasing half-life of both eNOS protein and eNOS mRNA. Small interfering RNA-mediated depletion of endogenous Gα12 decreases eNOS levels. A quantitative correlation can be detected between the extent of down-regulation of Gα12 and eNOS in endothelial cells after prolonged treatment with thrombin. G protein-dependent increase of eNOS expression represents a novel mechanism by which heterotrimeric G proteins can regulate the activity of downstream signaling molecules.

  • Received September 13, 2005.
  • Accepted December 2, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 69 (3)
Molecular Pharmacology
Vol. 69, Issue 3
1 Mar 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Novel Mechanisms of G Protein-Dependent Regulation of Endothelial Nitric-Oxide Synthase
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Novel Mechanisms of G Protein-Dependent Regulation of Endothelial Nitric-Oxide Synthase

Alexandra V. Andreeva, Rita Vaiskunaite, Mikhail A. Kutuzov, Jasmina Profirovic, Randal A. Skidgel and Tatyana Voyno-Yasenetskaya
Molecular Pharmacology March 1, 2006, 69 (3) 975-982; DOI: https://doi.org/10.1124/mol.105.018846

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Novel Mechanisms of G Protein-Dependent Regulation of Endothelial Nitric-Oxide Synthase

Alexandra V. Andreeva, Rita Vaiskunaite, Mikhail A. Kutuzov, Jasmina Profirovic, Randal A. Skidgel and Tatyana Voyno-Yasenetskaya
Molecular Pharmacology March 1, 2006, 69 (3) 975-982; DOI: https://doi.org/10.1124/mol.105.018846
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Mechanism of the selective action of paraherquamide A
  • Fatty Acid Amide Hydrolase in Cisplatin Nephrotoxicity
  • Use-Dependent Relief of A-887826 Inhibition
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics