Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleOriginal Article

Antimony-Based Antileishmanial Compounds Prolong the Cardiac Action Potential by an Increase in Cardiac Calcium Currents

Yuri A. Kuryshev, Lu Wang, Barbara A. Wible, Xiaoping Wan and Eckhard Ficker
Molecular Pharmacology April 2006, 69 (4) 1216-1225; DOI: https://doi.org/10.1124/mol.105.019281
Yuri A. Kuryshev
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lu Wang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Barbara A. Wible
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xiaoping Wan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eckhard Ficker
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

Antimonial agents are a mainstay for the treatment of leishmaniasis, a group of protozoal diseases that includes visceral leishmaniasis, or Kala Azar. Chemotherapy with trivalent potassium antimony tartrate (PAT) and, more importantly, pentavalent antimony-carbohydrate complexes, such as sodium stibogluconate (SSG), has been reported to prolong the QT interval and produce life-threatening arrhythmias. PAT is chemically related to As2O3, which alters cardiac excitability by inhibition of human ether a-go-go related gene (hERG) trafficking and an increase of cardiac calcium currents. In this study, we report that PAT does not block hERG currents on short-term exposure but reduces current density on long-term exposure (IC50, 11.8 μM) and inhibits hERG maturation on Western blots (IC50, 62 μM). Therapeutic concentrations of 0.3 μM PAT increase cardiac calcium currents from -4.8 ± 0.7 to -7.3 ± 0.5 pA/pF at 10 mV. In marked contrast, pentavalent SSG, the drug of choice for the treatment of leishmaniasis, did not affect hERG/IKr or any other cardiac potassium current at therapeutic concentrations. However, both cardiac sodium and calcium currents were significantly increased on long-term exposure to 30 μM SSG in isolated guinea pig ventricular myocytes. We propose that the increase in calcium currents from -3.2 ± 0.3 to -5.1 ± 0.3 pA/pF at 10 mV prolongs APD90 from 464 ± 35 to 892 ± 64 ms. Our data suggest that conversion of Sb(V) into active Sb(III) in patients produces a common mode of action for antimonial drugs, which define a novel compound class that increases cardiac risk not by a reduction of hERG/IKr currents but—for the first time—by an increase in cardiac calcium currents.

  • Received September 24, 2005.
  • Accepted January 13, 2006.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 69 (4)
Molecular Pharmacology
Vol. 69, Issue 4
1 Apr 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Antimony-Based Antileishmanial Compounds Prolong the Cardiac Action Potential by an Increase in Cardiac Calcium Currents
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleOriginal Article

Antimony-Based Antileishmanial Compounds Prolong the Cardiac Action Potential by an Increase in Cardiac Calcium Currents

Yuri A. Kuryshev, Lu Wang, Barbara A. Wible, Xiaoping Wan and Eckhard Ficker
Molecular Pharmacology April 1, 2006, 69 (4) 1216-1225; DOI: https://doi.org/10.1124/mol.105.019281

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleOriginal Article

Antimony-Based Antileishmanial Compounds Prolong the Cardiac Action Potential by an Increase in Cardiac Calcium Currents

Yuri A. Kuryshev, Lu Wang, Barbara A. Wible, Xiaoping Wan and Eckhard Ficker
Molecular Pharmacology April 1, 2006, 69 (4) 1216-1225; DOI: https://doi.org/10.1124/mol.105.019281
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • The 73-kDa Heat Shock Cognate Protein Is a CXCR4 Binding Protein that Regulates the Receptor Endocytosis and the Receptor-Mediated Chemotaxis
  • Endogenous Regulator of G-Protein Signaling Proteins Regulate the Kinetics of Gαq/11-Mediated Modulation of Ion Channels in Central Nervous System Neurons
  • A Novel Cyclohexene Derivative, Ethyl (6R)-6-[N-(2-Chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), Selectively Inhibits Toll-Like Receptor 4-Mediated Cytokine Production through Suppression of Intracellular Signaling
Show more ORIGINAL ARTICLE

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics