Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleOriginal Article

Dissection of an Allosteric Mechanism on the Serotonin Transporter: A Cross-Species Study

Henrik Amtoft Neubauer, Carsten Gram Hansen and Ove Wiborg
Molecular Pharmacology April 2006, 69 (4) 1242-1250; DOI: https://doi.org/10.1124/mol.105.018507
Henrik Amtoft Neubauer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Carsten Gram Hansen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ove Wiborg
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The serotonin transporter (SERT), which belongs to a family of sodium/chloride-dependent transporters, is the major pharmacological target in the treatment of several clinical disorders, including depression and anxiety. Interaction with a low-affinity allosteric site on SERT modulates the ligand affinity at the high-affinity binding site. Serotonin (5-hydroxytryptamine) and certain SERT inhibitors possess affinity for both sites. In the present study, we report the characterization of a severely attenuated allosteric mechanism at the recently cloned chicken serotonin transporter (gSERT). A cross-species chimera study was performed, followed by species scanning mutagenesis. Residues important for the allosteric mechanism were mapped to the C-terminal part of SERT containing the transmembrane domains 10 to 12. We identified nine residues located in four distinct amino acid segments. The contribution of each segment and individual residues was investigated. Consequently, a gSERT mutant with a restored allosteric mechanism, as well as a human SERT (hSERT) mutant with a severely attenuated allosteric mechanism, was generated. The nine residues confer a functional allosteric mechanism for different combinations of ligands, suggesting that they contribute to a general allosteric mechanism at SERT. The finding of an allosteric mechanism at SERT is likely to be of physiological importance, in that serotonin was also found to act as an allosteric effector at duloxetine, RTI-55 and (S)-citalopram. Furthermore, the allosteric potency of 5-HT was found to be conserved for both hSERT and gSERT.

  • Received August 29, 2005.
  • Accepted January 24, 2006.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 69 (4)
Molecular Pharmacology
Vol. 69, Issue 4
1 Apr 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Dissection of an Allosteric Mechanism on the Serotonin Transporter: A Cross-Species Study
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleOriginal Article

Dissection of an Allosteric Mechanism on the Serotonin Transporter: A Cross-Species Study

Henrik Amtoft Neubauer, Carsten Gram Hansen and Ove Wiborg
Molecular Pharmacology April 1, 2006, 69 (4) 1242-1250; DOI: https://doi.org/10.1124/mol.105.018507

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleOriginal Article

Dissection of an Allosteric Mechanism on the Serotonin Transporter: A Cross-Species Study

Henrik Amtoft Neubauer, Carsten Gram Hansen and Ove Wiborg
Molecular Pharmacology April 1, 2006, 69 (4) 1242-1250; DOI: https://doi.org/10.1124/mol.105.018507
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • The 73-kDa Heat Shock Cognate Protein Is a CXCR4 Binding Protein that Regulates the Receptor Endocytosis and the Receptor-Mediated Chemotaxis
  • Endogenous Regulator of G-Protein Signaling Proteins Regulate the Kinetics of Gαq/11-Mediated Modulation of Ion Channels in Central Nervous System Neurons
  • A Novel Cyclohexene Derivative, Ethyl (6R)-6-[N-(2-Chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), Selectively Inhibits Toll-Like Receptor 4-Mediated Cytokine Production through Suppression of Intracellular Signaling
Show more ORIGINAL ARTICLE

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics