Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Bradycardic and Proarrhythmic Properties of Sinus Node Inhibitors

Juliane Stieber, Karen Wieland, Georg Stöckl, Andreas Ludwig and Franz Hofmann
Molecular Pharmacology April 2006, 69 (4) 1328-1337; DOI: https://doi.org/10.1124/mol.105.020701
Juliane Stieber
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Karen Wieland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Georg Stöckl
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andreas Ludwig
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Franz Hofmann
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Sinus node inhibitors reduce the heart rate presumably by blocking the pacemaker current If in the cardiac conduction system. This pacemaker current is carried by four hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels. We tested the potential subtype-specificity of the sinus node inhibitors cilobradine, ivabradine, and zatebradine using cloned HCN channels. All three substances blocked the slow inward current through human HCN1, HCN2, HCN3, and HCN4 channels. There was no subtype-specificity for the steady-state block, with mean IC50 values of 0.99, 2.25, and 1.96 μM for cilobradine, ivabradine, and zatebradine, respectively. Native If, recorded from mouse sinoatrial node cells, was slightly more efficiently blocked by cilobradine (IC50 value of 0.62 μM) than were the HCN currents. The block of If in sinoatrial node cells resulted in slower and dysrhythmic spontaneous action potentials. The in vivo action of these blockers was analyzed using telemetric ECG recordings in mice. Each compound reduced the heart rate dose-dependently from 600 to 200 bpm with ED50 values of 1.2, 4.7, and 1.8 mg/kg for cilobradine, ivabradine, and zatebradine, respectively. β-Adrenergic stimulation or forced physical activity only partly reversed this bradycardia. In addition to bradycardia, all three drugs induced increasing arrhythmia at concentrations greater than 5 mg/kg for cilobradine, greater than 10 mg/kg for zatebradine, or greater than 15 mg/kg for ivabradine. This dysrhythmic heart rate is characterized by periodic fluctuations of the duration between the T and P wave, resembling a form of sick sinus syndrome in humans. Hence, all available sinus node inhibitors possess an as-yet-unrecognized proarrhythmic potential.

  • Received November 10, 2005.
  • Accepted December 30, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 69 (4)
Molecular Pharmacology
Vol. 69, Issue 4
1 Apr 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Bradycardic and Proarrhythmic Properties of Sinus Node Inhibitors
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Bradycardic and Proarrhythmic Properties of Sinus Node Inhibitors

Juliane Stieber, Karen Wieland, Georg Stöckl, Andreas Ludwig and Franz Hofmann
Molecular Pharmacology April 1, 2006, 69 (4) 1328-1337; DOI: https://doi.org/10.1124/mol.105.020701

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Bradycardic and Proarrhythmic Properties of Sinus Node Inhibitors

Juliane Stieber, Karen Wieland, Georg Stöckl, Andreas Ludwig and Franz Hofmann
Molecular Pharmacology April 1, 2006, 69 (4) 1328-1337; DOI: https://doi.org/10.1124/mol.105.020701
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Therapeutic Effects of FGF23 Antagonists in Hyp Mice
  • TRPV3 and TRPV4 Channels Coassemble into Heterotetramers
  • Secretin Amino-Terminal Structure-Activity Relationships and Complementary Mutagenesis at the Site of Docking to the Secretin Receptor
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics