Abstract
Endothelin-1 (ET-1) is implicated in fibroblast proliferation, which results in cardiac fibrosis. Both reactive oxygen species (ROS) generation and epidermal growth factor receptor (EGFR) transactivation play critical roles in ET-1 signal transduction. In this study, we used rat cardiac fibroblasts treated with ET-1 to investigate the connection between ROS generation and EGFR transactivation. ET-1 treatment was found to stimulate the phosphorylation of EGFR and ROS generation, which were abolished by ETA receptor antagonist N-(N-(N-((hexahydro-1H-azepin-1-yl)carbonyl)-l-leucyl)-d-tryptophyl)-d-tryptophan (BQ485). NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI), ROS scavenger N-acetyl cysteine (NAC), and p47phox small interfering RNA knockdown all inhibited the EGFR transactivation induced by ET-1. In contrast, EGFR inhibitor 4-(3′-chloroanilino)-6,7-dimethoxyquinazoline (AG-1478) cannot inhibit intracellular ROS generation induced by ET-1. Src homology 2-containing tyrosine phosphatase (SHP-2) was shown to be associated with EGFR during ET-1 treatment by EGFR coimmunoprecipitation. ROS have been reported to transiently oxidize the catalytic cysteine of phosphotyrosine phosphatases to inhibit their activity. We examined the effect of ROS on SHP-2 in cardiac fibroblasts using a modified malachite green phosphatase assay. SHP-2 was transiently oxidized during ET-1 treatment, and this transient oxidization could be repressed by DPI or NAC treatment. In SHP-2 knockdown cells, ET-1-induced phosphorylation of EGFR was dramatically elevated and is not influenced by NAC and DPI. However, this elevation was suppressed by GM6001 [a matrix metalloproteinase (MMP) inhibitor] and heparin binding (HB)-epidermal growth factor (EGF) neutralizing antibody. Our data suggest that ET-1-ETA-mediated ROS generation can transiently inhibit SHP-2 activity to facilitate the MMP-dependent and HB-EGF-stimulated EGFR transactivation and mitogenic signal transduction in rat cardiac fibroblasts.
- Received August 2, 2005.
- Accepted January 3, 2006.
- The American Society for Pharmacology and Experimental Therapeutics
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|