Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Iodinated N-Acylvanillamines: Potential “Multiple-Target” Anti-Inflammatory Agents Acting via the Inhibition of T-Cell Activation and Antagonism at Vanilloid TRPV1 Channels

Nieves Márquez, Luciano De Petrocellis, Francisco J. Caballero, Antonio Macho, Aniello Schiano-Moriello, Alberto Minassi, Giovanni Appendino, Eduardo Muñoz and Vincenzo Di Marzo
Molecular Pharmacology April 2006, 69 (4) 1373-1382; DOI: https://doi.org/10.1124/mol.105.019786
Nieves Márquez
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Luciano De Petrocellis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Francisco J. Caballero
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Antonio Macho
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Aniello Schiano-Moriello
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alberto Minassi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Giovanni Appendino
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eduardo Muñoz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Vincenzo Di Marzo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Synthetic N-acylvanillamines were designed and developed as metabolically stable compounds with pharmacological potential in analgesia and inflammation because of their interaction with cannabinoid receptors and the vanilloid receptor (TRPV1). Here, we show that arvanil inhibits early events in T-cell receptor (TCR)-mediated T-cell activation, such as calcium mobilization and nuclear factor of activated T-cell activation, and in late events in TCR-mediated activation, such as interleukin (IL)-2 gene transcription, IL-2R expression, and cell-cycle progression. Arvanil also prevents tumor necrosis factor-α-induced nuclear factor-κB (NF-κB) activation by direct inhibition of IκBα degradation, NF-κB binding to DNA, and NF-κB-dependent transcription. Aromatic iodination meta to the phenolic hydroxyl (on the 6′-carbon atom) converts arvanil and olvanil from TRPV1 agonists into antagonists. However, this structural modification did not affect the immunosuppressive and proapoptotic activity of these compounds. In summary, we described here novel activities of arvanil on T-cell functions and the development of two novel inhibitors of neurogenic inflammation (6′-I-olvanil and 6′-I-arvanil) endowed with a unique combination of TRPV1 antagonistic-, immunosuppressive-, and NF-κB-inhibitory properties. Our findings provide new mechanistic insights into the biological activities of N-alkylvanillamines and should foster the synthesis of improved analogs amenable to pharmaceutical development as analgesic and anti-inflammatory agents.

  • Received October 11, 2005.
  • Accepted January 3, 2006.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 69 (4)
Molecular Pharmacology
Vol. 69, Issue 4
1 Apr 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Iodinated N-Acylvanillamines: Potential “Multiple-Target” Anti-Inflammatory Agents Acting via the Inhibition of T-Cell Activation and Antagonism at Vanilloid TRPV1 Channels
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Iodinated N-Acylvanillamines: Potential “Multiple-Target” Anti-Inflammatory Agents Acting via the Inhibition of T-Cell Activation and Antagonism at Vanilloid TRPV1 Channels

Nieves Márquez, Luciano De Petrocellis, Francisco J. Caballero, Antonio Macho, Aniello Schiano-Moriello, Alberto Minassi, Giovanni Appendino, Eduardo Muñoz and Vincenzo Di Marzo
Molecular Pharmacology April 1, 2006, 69 (4) 1373-1382; DOI: https://doi.org/10.1124/mol.105.019786

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Iodinated N-Acylvanillamines: Potential “Multiple-Target” Anti-Inflammatory Agents Acting via the Inhibition of T-Cell Activation and Antagonism at Vanilloid TRPV1 Channels

Nieves Márquez, Luciano De Petrocellis, Francisco J. Caballero, Antonio Macho, Aniello Schiano-Moriello, Alberto Minassi, Giovanni Appendino, Eduardo Muñoz and Vincenzo Di Marzo
Molecular Pharmacology April 1, 2006, 69 (4) 1373-1382; DOI: https://doi.org/10.1124/mol.105.019786
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Therapeutic Effects of FGF23 Antagonists in Hyp Mice
  • TRPV3 and TRPV4 Channels Coassemble into Heterotetramers
  • Secretin Amino-Terminal Structure-Activity Relationships and Complementary Mutagenesis at the Site of Docking to the Secretin Receptor
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics