Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Identification and Characterization of Compounds That Potentiate NT-3-Mediated Trk Receptor Activity

Martin A. Lewis, Lisa Hunihan, Diana Franco, Barbara Robertson, Jane Palmer, Denis R. St. Laurent, Balu N. Balasubramanian, Yi Li and Ryan S. Westphal
Molecular Pharmacology April 2006, 69 (4) 1396-1404; DOI: https://doi.org/10.1124/mol.105.020255
Martin A. Lewis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lisa Hunihan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Diana Franco
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Barbara Robertson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jane Palmer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Denis R. St. Laurent
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Balu N. Balasubramanian
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yi Li
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ryan S. Westphal
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Neurotrophins are a family of secreted proteins that play an important role in the development, differentiation, and survival of neurons. Studies also suggest that aberrant neurotrophin signaling may play a role in processes underlying disease states such as schizophrenia, Alzheimer's disease, and depression. Whereas the development of agents that selectively stimulate neurotrophin signaling has proven to be difficult, compounds have been identified that potentiate neurotrophin 3 (NT-3)-mediated activation of trk A. In the present studies, we extend those initial observations to identify compounds that also potentiate NT-3-mediated activation of trk B. Compound potentiation of NT-3 was observed using several readouts of transfected and endogenous trk receptor activity, including trk receptor phosphorylation, mitogen-activated protein kinase phosphorylation, reporter assay activity (β-lactamase and luciferase), cell survival and neurite extension assays. Studies using chimeric trk receptors demonstrated that the extracellular domain is essential for compound potentiation and rule out interaction with intracellular signaling molecules as a mechanism of compound activity. Thus, the present studies demonstrate that trk B receptor activity can be potentiated by small-molecule compounds via the extracellular domain of the receptor and provide reagents for further evaluating the role of NT-3-mediated trk A and trk B activity in vivo.

  • Received October 26, 2005.
  • Accepted January 5, 2006.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 69 (4)
Molecular Pharmacology
Vol. 69, Issue 4
1 Apr 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Identification and Characterization of Compounds That Potentiate NT-3-Mediated Trk Receptor Activity
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Identification and Characterization of Compounds That Potentiate NT-3-Mediated Trk Receptor Activity

Martin A. Lewis, Lisa Hunihan, Diana Franco, Barbara Robertson, Jane Palmer, Denis R. St. Laurent, Balu N. Balasubramanian, Yi Li and Ryan S. Westphal
Molecular Pharmacology April 1, 2006, 69 (4) 1396-1404; DOI: https://doi.org/10.1124/mol.105.020255

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Identification and Characterization of Compounds That Potentiate NT-3-Mediated Trk Receptor Activity

Martin A. Lewis, Lisa Hunihan, Diana Franco, Barbara Robertson, Jane Palmer, Denis R. St. Laurent, Balu N. Balasubramanian, Yi Li and Ryan S. Westphal
Molecular Pharmacology April 1, 2006, 69 (4) 1396-1404; DOI: https://doi.org/10.1124/mol.105.020255
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Polypharmacology of CBL0137 in the African Trypanosome
  • Peptide-mediated differential signaling at GPR83
  • Therapeutic Effects of FGF23 Antagonists in Hyp Mice
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics