Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Adenylyl Cyclase Superactivation Induced by Long-Term Treatment with Opioid Agonist Is Dependent on Receptor Localized within Lipid Rafts and Is Independent of Receptor Internalization

Hui Zhao, Horace H. Loh and P. Y. Law
Molecular Pharmacology April 2006, 69 (4) 1421-1432; DOI: https://doi.org/10.1124/mol.105.020024
Hui Zhao
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Horace H. Loh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. Y. Law
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Long-term opioid agonist treatment results in adenylyl cyclase superactivation. A recent “RAVE” theory implicates a direct correlation between the ability of agonist to induce receptor internalization and the magnitude of adenylyl cyclase superactivation. We decided to test such a theory by examining the adenylyl cyclase superactivation after long-term activation of μ-opioid receptor (MOR) in an EcR293 cell model. We examined the magnitudes of adenylyl cyclase superactivation in the presence of naloxone after long-term treatment with morphine, etorphine, and methadone, three agonists reported to have differential activities in promoting MOR internalization. It can be shown that the magnitudes of adenylyl cyclase superactivation after treating with these three agonists, although different, were dependent on MOR density. Blunting MOR internalization with the dominant-negative mutant of dynamin, K44E, did not alter the magnitude of either morphine- or etorphine-induced adenylyl cyclase superactivation. In the presence of diprenorphine, the magnitude of adenylyl cyclase superactivation after etorphine treatment was identical to that observed with morphine. It could be demonstrated further that adenylyl cyclase superactivation is dependent on the cell surface-located MOR. Sucrose gradient fractionation demonstrated the colocalization of MOR and adenylyl cyclase V/VI with caveolin-1, a marker for lipid rafts. After long-term agonist treatment, the majority of MOR remained at the lipid rafts. Methyl-β-cyclodextrin (MβCD) completely blunted the adenylyl cyclase superactivation and agonist-induced receptor internalization. These MβCD actions were reversed by incubating the cells with cholesterol. Thus, the adenylyl cyclase superactivation is not dependent on agonist-induced receptor internalization. Rather, the location of MOR at lipid rafts is an absolute requirement for the observed adenylyl cyclase superactivation.

  • Received October 18, 2005.
  • Accepted January 13, 2006.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 69 (4)
Molecular Pharmacology
Vol. 69, Issue 4
1 Apr 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Adenylyl Cyclase Superactivation Induced by Long-Term Treatment with Opioid Agonist Is Dependent on Receptor Localized within Lipid Rafts and Is Independent of Receptor Internalization
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Adenylyl Cyclase Superactivation Induced by Long-Term Treatment with Opioid Agonist Is Dependent on Receptor Localized within Lipid Rafts and Is Independent of Receptor Internalization

Hui Zhao, Horace H. Loh and P. Y. Law
Molecular Pharmacology April 1, 2006, 69 (4) 1421-1432; DOI: https://doi.org/10.1124/mol.105.020024

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

Adenylyl Cyclase Superactivation Induced by Long-Term Treatment with Opioid Agonist Is Dependent on Receptor Localized within Lipid Rafts and Is Independent of Receptor Internalization

Hui Zhao, Horace H. Loh and P. Y. Law
Molecular Pharmacology April 1, 2006, 69 (4) 1421-1432; DOI: https://doi.org/10.1124/mol.105.020024
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Editing TOP2α Intron 19 5′ SS Circumvents Drug Resistance
  • CTS Bias
  • Positive allosteric modulation of the mGlu5 receptor
Show more Article

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics