Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Preferential Inhibition of the Magnesium-Dependent Strand Transfer Reaction of HIV-1 Integrase by α-Hydroxytropolones

Elena A. Semenova, Allison A. Johnson, Christophe Marchand, David A. Davis, Robert Yarchoan and Yves Pommier
Molecular Pharmacology April 2006, 69 (4) 1454-1460; DOI: https://doi.org/10.1124/mol.105.020321
Elena A. Semenova
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Allison A. Johnson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christophe Marchand
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David A. Davis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert Yarchoan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yves Pommier
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Integration is a crucial step in the life cycle of human immunodeficiency virus type 1 (HIV-1); therefore, inhibitors of HIV-1 integrase are candidates for antiretroviral therapy. Two 7-hydroxytropolone derivatives (α-hydroxytropolones) were found to inhibit HIV-1 integrase. A structure-activity relationship investigation with several tropolone derivatives from The National Cancer Institute compound repository demonstrated that the 7-hydroxy group is essential for integrase inhibition. α-Hydroxytropolones preferentially inhibit strand transfer and are inhibitory both in the presence of magnesium or manganese. Lack of inhibition of disintegration in the presence of magnesium coupled with results from different cross-linking assays suggests α-hydroxytropolones as interfacial inhibitors. We propose that α-hydroxytropolones chelate the divalent metal (Mg2+ or Mn2+) in the enzyme active site. The most active compound against HIV-1 integrase in biochemical assays [2,4,6-cycloheptatrien-1-one, 2,7-dihydroxy-4-isopropyl (NSC 18806) IC50 = 4.8 ± 2.5 μM] exhibits weak cytoprotective activity against HIV-1IIIB in a cell-based assay. α-Hydroxytropolones represent a new family of inhibitors for the development of novel drugs against HIV infection.

  • Received October 25, 2005.
  • Accepted January 17, 2006.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 69 (4)
Molecular Pharmacology
Vol. 69, Issue 4
1 Apr 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Preferential Inhibition of the Magnesium-Dependent Strand Transfer Reaction of HIV-1 Integrase by α-Hydroxytropolones
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Preferential Inhibition of the Magnesium-Dependent Strand Transfer Reaction of HIV-1 Integrase by α-Hydroxytropolones

Elena A. Semenova, Allison A. Johnson, Christophe Marchand, David A. Davis, Robert Yarchoan and Yves Pommier
Molecular Pharmacology April 1, 2006, 69 (4) 1454-1460; DOI: https://doi.org/10.1124/mol.105.020321

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Preferential Inhibition of the Magnesium-Dependent Strand Transfer Reaction of HIV-1 Integrase by α-Hydroxytropolones

Elena A. Semenova, Allison A. Johnson, Christophe Marchand, David A. Davis, Robert Yarchoan and Yves Pommier
Molecular Pharmacology April 1, 2006, 69 (4) 1454-1460; DOI: https://doi.org/10.1124/mol.105.020321
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Therapeutic Effects of FGF23 Antagonists in Hyp Mice
  • TRPV3 and TRPV4 Channels Coassemble into Heterotetramers
  • Secretin Amino-Terminal Structure-Activity Relationships and Complementary Mutagenesis at the Site of Docking to the Secretin Receptor
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics